×

Nonsmooth invexity in multiobjective programming. (English) Zbl 0826.90100

In this paper Reiland’s results on nonsmooth invexity [see T. W. Reiland, Bull. Aust. Math. Soc. 42, No. 3, 437-446 (1990; Zbl 0711.90072)] are extended to multicriterial problems with only inequalities as constraints. Especially necessary and sufficient Kuhn- Tucker conditions and Wolfe type duality theorems are proved.
Reviewer: A.Göpfert (Halle)

MSC:

90C29 Multi-objective and goal programming
90C26 Nonconvex programming, global optimization
49J52 Nonsmooth analysis

Citations:

Zbl 0711.90072
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ben-Israel A., J. Austral. Math. Soc. (Series B) 28 pp 1– (1986) · Zbl 0603.90119
[2] Chankong V., Multiobjective Decision Making: Theory and Methodology (1983) · Zbl 0622.90002
[3] Clarke F. H., Optimization and nonsmooth analysis (1983) · Zbl 0582.49001
[4] Craven B. D., J. Austral. Math. Soc. (Series A) 39 pp 1– (1985)
[5] Egudo R. R., J. Math. Anal. Appl. 126 pp 469– (1981) · Zbl 0635.90086
[6] Hanson M. A., J. Math. Anal. Appl. 80 pp 545– (1981) · Zbl 0463.90080
[7] Hiriart-Urruty J. B., Math. Programming 14 pp 73– (1978) · Zbl 0373.90071
[8] Kar K., European Journal of Operational Research 48 pp 372– (1990) · Zbl 0719.90075
[9] Kim D. S., J. Inform. Optim. Sci. 12 pp 235– (1991)
[10] Lee G. M., J. Inform. Optim. Sci. 14 pp 149– (1993)
[11] Reiland T. W., Bull. Austral. Math. Soc. 42 pp 437– (1990) · Zbl 0711.90072
[12] Tanaka Y., J. Math. Anal. Appl. 144 pp 342– (1989) · Zbl 0685.90089
[13] Wolfe P., Quart. Appl. Math. 19 pp 239– (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.