×

zbMATH — the first resource for mathematics

The Runge approximation problem for holomorphic maps into Grassmannians. (English) Zbl 0827.32015
Let \(X\) be a complex affine algebraic variety and let \(f : X \to \mathbb{G}_{n, p}\) be a holomorphic map into the Grassmannian of \(p\)- dimensional complex vector subspaces of \(\mathbb{C}^n\). Assume that \(p + \dim X \leq n\). It is proved that \(f\) can be approximated by regular maps (that is, algebraic morphisms) if and only if the pull-back vector bundle \(f^* \gamma_{n,p}\), where \(\gamma_{n,p}\) is the universal vector bundle on \(\mathbb{G}_{n,p}\), admits an algebraic structure. Some applications are also discussed.

MSC:
32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs
14M15 Grassmannians, Schubert varieties, flag manifolds
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bochnak, J., Coste, M., Roy, M.-F.: Géometrie Algébrique Réelle. Ergebnisse der Math. Vol. 12, Berlin, Heidelberg, New York: Springer 1986
[2] Demailly, J.-P., Lempert, L., Shiffman, B.: Algebraic approximations of holomorphic maps from Stein domains to projective manifolds. Preprint · Zbl 0861.32006
[3] Forster, O.: Topologische Methoden in der Theorie Steinischer Räume. Actes, Congrès Intern. Math., 1970. Tome 2, pp. 613–618, Gauthier-Villars, Paris 1971
[4] Grauert, H.: Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann.133, 450–472 (1957) · Zbl 0080.29202
[5] Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc.2, 851–897 (1989) · Zbl 0686.32012
[6] Gunning, R., Rossi, H. Analytic functions of several complex variables. New Jersey: Prentice-Hall Inc. 1965 · Zbl 0141.08601
[7] Hörmander, L.: An introduction to complex analysis in several variables, 3rd Edn. Amsterdam, Oxford, New York: North-Holland 1990 · Zbl 0685.32001
[8] Jouanolou, J.P.: Comparison des K-theories algébrique et topologique de quelque varietés algébriques. C.R. Acad. Sci. Paris, Ser. A272, 1373–1375 (1971) · Zbl 0227.14013
[9] Narasimhan, R.: Analysis on Real and Complex Manifolds. Berlin, Heidelberg, New York, North-Holland 1968 · Zbl 0188.25803
[10] Swan, R.G.: Vector bundles, projective modules and the K-theory of spheres, in Algebraic Topology and K-Theory pp. 442–522. Ann. of Math. Studies. Vol. 113 Princeton Univ. Press 1987
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.