Tamura, Hideo The Efimov effect of three-body Schrödinger operators: Asymptotics for the number of negative eigenvalues. (English) Zbl 0827.35099 Nagoya Math. J. 130, 55-83 (1993). The author considers a system of three particles which move in the three- dimensional space and interact with each other through a pair potential \(V_{jk} (r_j - r_k)\) \((1 \leq j < k \leq 3\), \(r_j \in \mathbb{R}^3)\). It is supposed that \(|V_{jk} (x) |\leq C(1 + |x |)^{-\rho}\) for some \(\rho > 2\) and every two-body subsystem Hamiltonian has no negative bound state energies and has a resonance state at zero energy. For three-body Schrödinger operator the formula \[ N(E) = C_0 |\log E |\bigl( 1 + o(1) \bigr), \quad E \to 0 \] is proved where \(N(E)\) is the number of eigenvalues less than \(- E\). Reviewer: S.L.Edelstein (Rostov-na-Donu) Cited in 1 ReviewCited in 13 Documents MSC: 35P25 Scattering theory for PDEs 47A10 Spectrum, resolvent 81U10 \(n\)-body potential quantum scattering theory Keywords:Hamiltonian; bound state; resonance state; three-body Schrödinger operator PDF BibTeX XML Cite \textit{H. Tamura}, Nagoya Math. J. 130, 55--83 (1993; Zbl 0827.35099) Full Text: DOI References: [1] DOI: 10.1070/SM1974v023n04ABEH001730 · Zbl 0342.35041 · doi:10.1070/SM1974v023n04ABEH001730 [2] DOI: 10.1016/0022-1236(91)90038-7 · Zbl 0761.35078 · doi:10.1016/0022-1236(91)90038-7 [3] The Efimov effect: Discrete spectrum asymptotics (1992) · Zbl 0785.35070 [4] DOI: 10.1016/0022-1236(81)90073-2 · Zbl 0478.47024 · doi:10.1016/0022-1236(81)90073-2 [5] Phys. Lett. B 33 pp 563– (1970) [6] DOI: 10.1016/0003-4916(79)90339-7 · doi:10.1016/0003-4916(79)90339-7 [7] (1982) [8] DOI: 10.1215/S0012-7094-79-04631-3 · Zbl 0448.35080 · doi:10.1215/S0012-7094-79-04631-3 [9] Analysis of Operators (1982) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.