Geyer, Charles J. On the asymptotics of constrained \(M\)-estimation. (English) Zbl 0829.62029 Ann. Stat. 22, No. 4, 1993-2010 (1994). Summary: Limit theorems for an \(M\)-estimate constrained to lie in a closed subset of \(\mathbb{R}^d\) are given under two different sets of regularity conditions. A consistent sequence of global optimizers converges under Chernoff regularity [H. Chernoff, Ann. Math. Stat. 25, 573–578 (1954; Zbl 0056.37102)] of the parameter set. A \(\sqrt {n}\)-consistent sequence of local optimizers converges under Clarke regularity [F. H. Clarke, Optimization and nonsmooth analysis. New York: John Wiley (1983; Zbl 0582.49001)] of the parameter set. In either case the asymptotic distribution is a projection of a normal random vector on the tangent cone of the parameter set at the true parameter value. Limit theorems for the optimal value are also obtained, agreeing with Chernoff’s result in the case of maximum likelihood with global optimizers. Cited in 97 Documents MSC: 62F12 Asymptotic properties of parametric estimators 62F05 Asymptotic properties of parametric tests 62F30 Parametric inference under constraints 49J55 Existence of optimal solutions to problems involving randomness Keywords:maximum likelihood estimation; central limit theorem; constraint; M- estimate; global optimizers; Chernoff regularity; local optimizers; Clarke regularity; projection; normal random vector; tangent cone Citations:Zbl 0056.37102; Zbl 0582.49001 PDF BibTeX XML Cite \textit{C. J. Geyer}, Ann. Stat. 22, No. 4, 1993--2010 (1994; Zbl 0829.62029) Full Text: DOI OpenURL