×

zbMATH — the first resource for mathematics

Injective homogeneity and the Auslander-Gorenstein property. (English) Zbl 0830.16010
For a finitely generated right module \(M\) over a ring \(R\), the nonnegative integers \(\text{u.gr}(M)=\text{sup}\{n\mid\text{Ext}^n_R (M,R)\neq 0\}\) and \(j(M)=\inf\{n\mid\text{Ext}^n_R (M,R)\neq 0\}\) are called the upper grade and the grade of \(M\), respectively. A noetherian ring \(R\) with finite injective dimension is called an Auslander-Gorenstein ring, if, given any finitely generated \(R\)-module \(M\) and any integer \(i\), \(j(N)\geq i\) for every submodule \(N\) of \(\text{Ext}^i_R (M,R)\), and \(R\) is called Macaulay, if furthermore \(j(M) + \text{K.dim}(M)=\text{K.dim}(R)\) for every finitely generated module \(M\). The Auslander-Gorenstein and Macaulay properties are closely related to some other homological properties. For example, J. T. Stafford and J. Zhang [J. Algebra 168, 988-1026 (1994; Zbl 0812.16046)] have shown that for a noetherian P.I. ring \(R\) to be Auslander-Gorenstein and Macaulay, it suffices to be injectively smooth, that is, to satisfy \(\text{u.gr}(R/P)=\text{inj.dim}(R)\) for every maximal ideal \(P\). In the paper under review, the author shows that this latter condition is necessary as well. He also shows that \(R\) is Auslander-Gorenstein when it is injectively homogeneous, that is, when \(\text{u.gr}(R/P)=\text{u.gr}(R/Q)\) for any two maximal ideals \(P\) and \(Q\) that belong to the same clique. The transfer of injective homogeneity and of injective smoothness between strongly group-graded rings and their coefficient rings is studied, and it is applied to establish the following result. Let \(G\) be a finite group and let \(S=R(G)\) be a strongly \(G\)-graded ring with noetherian coefficient ring \(R\). Then \(R\) is Auslander-Gorenstein (Auslander-Gorenstein and Macaulay) if and only if so is \(S\).

MSC:
16E10 Homological dimension in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)
16W50 Graded rings and modules (associative rings and algebras)
16R40 Identities other than those of matrices over commutative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Passman, Infinite crossed products (1989) · Zbl 0662.16001
[2] Rotman, An introduction to homological algebra (1979) · Zbl 0441.18018
[3] DOI: 10.2307/1999586 · Zbl 0533.16001 · doi:10.2307/1999586
[4] DOI: 10.1007/BF01164161 · Zbl 0566.17005 · doi:10.1007/BF01164161
[5] DOI: 10.1016/0022-4049(88)90078-3 · Zbl 0648.16017 · doi:10.1016/0022-4049(88)90078-3
[6] DOI: 10.2307/1999529 · Zbl 0531.16019 · doi:10.2307/1999529
[7] DOI: 10.1016/0022-4049(86)90096-4 · Zbl 0587.16012 · doi:10.1016/0022-4049(86)90096-4
[8] Björk, Séminaire d’Algèbre P. Dubreil et M. P.Malliavin pp 137– (1987)
[9] Bell, Notes on localization in noncommutative Noetherian rings (1988)
[10] DOI: 10.1007/BF01112819 · Zbl 0112.26604 · doi:10.1007/BF01112819
[11] Anderson, Rings and categories of modules (1974) · Zbl 0301.16001 · doi:10.1007/978-1-4684-9913-1
[12] Năstăsescu, Graded ring theory (1982)
[13] Năstăsescu, Comm. Algebra 11 pp 1033– (1983) · Zbl 0522.16002 · doi:10.1080/00927872.1983.10487600
[14] Montgomery, Fixed rings of finite automorphism groups of associative rings (1980) · Zbl 0449.16001 · doi:10.1007/BFb0091561
[15] McConnell, Noncommutative Noetherian rings (1987) · Zbl 0644.16008
[16] Levasseur, Glasgow Math. J. 34 pp 277– (1992)
[17] DOI: 10.1016/0021-8693(90)90299-4 · Zbl 0721.16010 · doi:10.1016/0021-8693(90)90299-4
[18] DOI: 10.2307/2000175 · Zbl 0584.16001 · doi:10.2307/2000175
[19] Goodearl, An introduction to noncommutative Noetherian rings (1989) · Zbl 0679.16001
[20] DOI: 10.2307/2045179 · Zbl 0519.16011 · doi:10.2307/2045179
[21] DOI: 10.1017/S0013091500017089 · Zbl 0562.16013 · doi:10.1017/S0013091500017089
[22] DOI: 10.1007/BF01161413 · Zbl 0424.16001 · doi:10.1007/BF01161413
[23] DOI: 10.1016/0021-8693(69)90007-6 · Zbl 0216.07001 · doi:10.1016/0021-8693(69)90007-6
[24] DOI: 10.1006/jabr.1994.1056 · Zbl 0803.16027 · doi:10.1006/jabr.1994.1056
[25] Warfield, Séminaire d’Algèbre P. Dubreil et M. P. Mallavin pp 178– (1985)
[26] Stenstrom, Rings of quotients (1975) · doi:10.1007/978-3-642-66066-5
[27] DOI: 10.1006/jabr.1994.1267 · Zbl 0812.16046 · doi:10.1006/jabr.1994.1267
[28] Stafford, Infinite cliques in Noetherian rings
[29] Northcott, An introduction to homological algebra (1960) · Zbl 0116.01401 · doi:10.1017/CBO9780511565915
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.