×

Computing the Hilbert transform on the real line. (English) Zbl 0830.65127

A complete and orthogonal basis set for \(L_2\) is considered, from which the author shows a new algorithm for computing the Hilbert transform on the real line, and its error analysis is presented. Some comparisons with other methods are given.

MSC:

65R10 Numerical methods for integral transforms
44A15 Special integral transforms (Legendre, Hilbert, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Abramowitz and I. Stegun, Handbook of mathematical functions, Dover, New York, 1972. · Zbl 0515.33001
[2] N. K. Bary, A treatise on trigonometric series. Vols. I, II, Authorized translation by Margaret F. Mullins. A Pergamon Press Book, The Macmillan Co., New York, 1964. · Zbl 0129.28002
[3] T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid. Mech. 25 (1967), 559-592. · Zbl 0147.46502
[4] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, Wiley-Interscience, New York, 1983.
[5] John P. Boyd, Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys. 69 (1987), no. 1, 112 – 142. · Zbl 0615.65090
[6] John P. Boyd, The orthogonal rational functions of Higgins and Christov and algebraically mapped Chebyshev polynomials, J. Approx. Theory 61 (1990), no. 1, 98 – 105. · Zbl 0717.42029
[7] Paul L. Butzer and Rolf J. Nessel, Fourier analysis and approximation, Academic Press, New York-London, 1971. Volume 1: One-dimensional theory; Pure and Applied Mathematics, Vol. 40. · Zbl 0217.42603
[8] C. I. Christov, A complete orthonormal system of functions in \?²(-\infty ,\infty ) space, SIAM J. Appl. Math. 42 (1982), no. 6, 1337 – 1344. · Zbl 0562.33009
[9] Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. · Zbl 0537.65020
[10] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. · Zbl 0055.36401
[11] Peter Henrici, Applied and computational complex analysis, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Volume 1: Power series — integration — conformal mapping — location of zeros; Pure and Applied Mathematics. · Zbl 0313.30001
[12] John Rowland Higgins, Completeness and basis properties of sets of special functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Cambridge Tracts in Mathematics, Vol. 72. · Zbl 0595.42013
[13] Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. · Zbl 0102.29401
[14] R. James, Pseudospectral methods for the Benjamin-Ono equation, Master’s Paper, Oregon State Unversity (unpublished).
[15] R. James and J. A. C. Weideman, Pseudospectral methods for the Benjamin-Ono equation, Advances in Computer Methods for Partial Differential Equations–VII , IMACS, New Brunswick, 1992, pp. 371-377.
[16] R. Kress and E. Martensen, Anwendung der Rechteckregel auf die reelle Hilberttransformation mit unendlichem Intervall, Z. Angew. Math. Mech. 50 (1970), T61 – T64 (German). · Zbl 0207.16203
[17] Hiroaki Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975), no. 4, 1082 – 1091. · Zbl 1334.76027
[18] Allen C. Pipkin, A course on integral equations, Texts in Applied Mathematics, vol. 9, Springer-Verlag, New York, 1991. · Zbl 0743.45002
[19] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series. Vol. 1, Gordon & Breach Science Publishers, New York, 1986. Elementary functions; Translated from the Russian and with a preface by N. M. Queen. · Zbl 0733.00004
[20] Frank Stenger, Approximations via Whittaker’s cardinal function, J. Approximation Theory 17 (1976), no. 3, 222 – 240. · Zbl 0332.41013
[21] H. Weber, Numerical computation of the Fourier transform using Laguerre functions and the fast Fourier transform, Numer. Math. 36 (1980/81), no. 2, 197 – 209. · Zbl 0437.65109
[22] William T. Weeks, Numerical inversion of Laplace transforms using Laguerre functions, J. Assoc. Comput. Mach. 13 (1966), 419 – 429. · Zbl 0141.33401
[23] J. A. C. Weideman, The eigenvalues of Hermite and rational spectral differentiation matrices, Numer. Math. 61 (1992), no. 3, 409 – 432. · Zbl 0741.65078
[24] J. A. C. Weideman, Computation of the complex error function, SIAM J. Numer. Anal. 31 (1994), no. 5, 1497 – 1518. , https://doi.org/10.1137/0731077 J. A. C. Weideman, Erratum: ”Computation of the complex error function”, SIAM J. Numer. Anal. 32 (1995), no. 1, 330 – 331. · Zbl 0844.65008
[25] J. A. C. Weideman, Computing integrals of the complex error function, Mathematics of Computation 1943 – 1993: a half-century of computational mathematics (Vancouver, BC, 1993) Proc. Sympos. Appl. Math., vol. 48, Amer. Math. Soc., Providence, RI, 1994, pp. 403 – 407. · Zbl 0815.65032
[26] N. Wiener, Extrapolation, interpolation, and smoothing of stationary time series, M.I.T. Press, Cambridge, 1949. · Zbl 0036.09705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.