×

zbMATH — the first resource for mathematics

Quantization of Kähler manifolds. IV. (English) Zbl 0831.58026
Summary: We use Berezin’s dequantization procedure to define a formal \(*\)-product on the algebra of smooth functions on the bounded symmetric domains. We prove that this formal \(*\)-product is convergent on a dense subalgebra of the algebra of smooth functions.
[For part I–III see the authors, J. Geom. Phys. 7, No. 1, 45-62 (1990; Zbl 0719.53044), Trans. Am. Math. Soc. 337, No. 1, 73-98 (1993; Zbl 0788.53062), and Lett. Math. Phys. 30, No. 4, 291-305 (1994; Zbl 0826.53052), respectively].

MSC:
53D50 Geometric quantization
32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization,Lett. Math. Phys. 1, 521-530 (1977). · doi:10.1007/BF00399745
[2] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization,Ann. Phys. 111, 61-110 (1978). · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[3] Berezin, F. A., Quantisation of Kähler manifold,Comm. Math. Phys. 40, 153 (1975). · Zbl 1272.53082 · doi:10.1007/BF01609397
[4] Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds I: Geometric interpretation of Berezin’s quantisation,J. Geom. Phys. 7, 45-62 (1990). · Zbl 0736.53056 · doi:10.1016/0393-0440(90)90007-P
[5] Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds. II,Trans. Amer. Math. Soc. 337, 73-98 (1993). · Zbl 0788.53062 · doi:10.2307/2154310
[6] Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds. III,Lett. Math. Phys. 30, 291-305 (1994). · Zbl 0826.53052 · doi:10.1007/BF00751065
[7] Harish-Chandra, Representations of Lie groups, IV,Amer. J. Math. 77, 743-777 (1955). · Zbl 0066.35603 · doi:10.2307/2372596
[8] Harish-Chandra, Representations of Lie groups, V,Amer. J. Math. 78, 1-41 (1956). · Zbl 0070.11602 · doi:10.2307/2372481
[9] Helgason, S.,Differential Geometry, Lie Groups and Symmetric Spaces, 2nd edn, Academic Press, New York, 1978. · Zbl 0451.53038
[10] Herb, R. A. and Wolf, J. A., Wave packets for the relative discrete series I. The holomorphic case,J. Funct Anal. 73, 1-37 (1987). · Zbl 0625.22010 · doi:10.1016/0022-1236(87)90057-7
[11] Satake, I., Factors of automorphy and Fock representations,Adv. in Math. 7, 83-110 (1971). · Zbl 0219.22016 · doi:10.1016/0001-8708(71)90043-0
[12] Warner, G.,Harmonic Analysis on Semi-simple Lie Groups II, Springer-Verlag, Berlin, Heidelberg, New York, 1972. · Zbl 0265.22021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.