×

zbMATH — the first resource for mathematics

Quasifinite highest weight modules over the super \(W_{1+\infty}\) algebra. (English) Zbl 0832.17026
The \(W_{1+ \infty}\) algebra is a central extension of the Lie algebra of differential operators on the circle. Such algebras were studied and their quasifinite representations were classified by V. Kac and A. Radul [Commun. Math. Phys. 157, 429-457 (1993; Zbl 0826.17027)]. The authors extend these results to the super case. \(SW_{1+\infty}\) is a central extension of the Lie super algebra of super differential operators acting on the polynomial algebra over \(2\times 2\) super matrices. Again quasifiniteness is characterised by polynomials and the highest weights are expressed in terms of differential equations. As an example a \((B, C)\)-system is considered.

MSC:
17B68 Virasoro and related algebras
17B70 Graded Lie (super)algebras
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] [AFMO1] Awata, H., Fukuma, M., Matsuo, Y., Odake, S.: Determinant Formulae of Quasi-finite Representation ofW 1+Algebra at Lower Levels. Phys. Lett.B332, 336–344 (1994) · Zbl 0894.17020 · doi:10.1016/0370-2693(94)91262-9
[2] [AFMO2] Awata, H., Fukuma, M., Matsuo, Y., Odake, S.: Determinant and Full Character Formulae of Quasi-Finite Representation ofW 1+Algebra. Preprint YITP/K-1060, UT-672, SULDP-1994-3, to be published in Commun. Math. Phys. · Zbl 0853.17023
[3] [AFMO3] Awata, H., Fukuma, M., Matsuo, Y., Odake, S.: Subalgebras ofW 1+and Their Quasifinite Representations. Preprint RIMS-985, YITP/K-1076, YITP/U-94-22, SULDP-1994-4, to be published in Jour. Phys.A · Zbl 0852.17025
[4] [AFOQ] Awata, H., Fukuma, M., Odake, S., Quano, Y.-H.: Eigensystem and Full Character Formula of theW 1+Algebra withc=1. Lett. Math. Phys.31, 289–298 (1994) · Zbl 0806.17026 · doi:10.1007/BF00762791
[5] [B] Bakas, I.: The large-N limit of Extended Conformal Systems. Phys. Lett.B228, 57–63 (1989) · doi:10.1016/0370-2693(89)90525-X
[6] [BdWV] Bergshoeff, E., de Wit, B., Vasiliev, X.: The Structure of the Super-W \(\lambda\)) Algebra. Nucl. Phys.B366, 315–346 (1991) · doi:10.1016/0550-3213(91)90005-I
[7] [BK] Bakas, I., Kiritsis, E.: UniversalW-Algebras in Quantum Field Theory. Int. J. Mod.A6, 2871–2890 (1991) · Zbl 0749.17023 · doi:10.1142/S0217751X91001428
[8] [BPRSS] Bergshoeff, E., Pope, C., Romans, L., Sezgin, E., Shen, X.: The SuperW (infinity) Algebra. Phys. Lett.B245, 447–452 (1990) · doi:10.1016/0370-2693(90)90672-S
[9] [BPZ] Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory. Nucl. Phys.B241, 333–380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[10] [BS] Bouwknegt, P., Schoutens, K.:W Symmetry in Conformal Field Theory. Phys. Rep.223, 183–276 (1993), and references therein · doi:10.1016/0370-1573(93)90111-P
[11] [CTZ] Cappelli, A., Trugenberger, C., Zemba, G.: Infinite Symmetry in the Quantum Hall Effect. Nucl. Phys.B396, 465–490 (1993); Classification of Quantum Hall Universality Classes byW 1+Symmetry. Phys. Rev. Lett.72, 1902–1905 (1994) · doi:10.1016/0550-3213(93)90660-H
[12] [DLS] Douglas, M., Li, K.-K., Staudacher, M.: Generalized Two-Dimensional QCD. Nucl. Phys.B420, 118–140 (1994) · doi:10.1016/0550-3213(94)90377-8
[13] [DVV] Dijkgraaf, R., Verlinde, E., Verlinde, H.: Loop Equations and Virasoro Constraints in Nonperturbative 2-D Quantum Gravity. Nucl. PhysB348, 435–456 (1991) · doi:10.1016/0550-3213(91)90199-8
[14] [EOTY] Eguchi, T., Ooguri, H., Taormina, A., Yang, S.-K.: Superconformal Algebras and String Compactification of Manifolds withSU(n) Holonomy. Nucl. Phys.B315, 193–221 (1989) · doi:10.1016/0550-3213(89)90454-9
[15] [F] Feigin, B.: The Lie Algebra gl(\(\lambda\)) and the Cohomology of the Lie Algebra of Differential Operators. Usp. Mat. Nauk35, 157–158 (1988) · Zbl 0653.17009
[16] [FFZ] Fairlie, D., Fletcher, P., Zachos, C.: Infinite Dimensional Algebras and a Trigonometric Basis for the Classical Lie Algebras. J. Math. Phys.31, 1088–1094 (1990) · Zbl 0708.17024 · doi:10.1063/1.528788
[17] [FKN] Fukuma, M., Kawai, H., Nakayama, R.: Continuum Schwinger-Dyson Equations and Universal Structures in Two-Dimensional Quantum Gravity. Int. J. Mod. Phys.A6, 1385–1406 (1991); Infinite Dimensional Grassmannian Structure of Two-Dimensional Quantum Gravity. Commun. Math. Phys.143, 371–403 (1991) · doi:10.1142/S0217751X91000733
[18] [FMS] Friedan, D., Martinec, E., Shenker, S.: Conformal Invariance, Supersymmetry and String Theory. Nucl. Phys.B271, 93–165 (1986)
[19] [G] Goeree, J.:W constraints in 2-D Quantum Gravity. Nucl. Phys.B358, 737–757 (1991) · doi:10.1016/0550-3213(91)90432-W
[20] [GS] Gervais, J., Sakita, B.: Field Theory Interpretation of Supergauges in Dual Models. Nucl. Phys.B34, 632–639 (1971) · doi:10.1016/0550-3213(71)90351-8
[21] [GT] Gross, D., Taylor, W.: Twists and Wilson Loops in the String Theory of Two-Dimensional QCD. Nucl. Phys.B400, 181–208 (1993) · Zbl 0941.81586 · doi:10.1016/0550-3213(93)90403-C
[22] [IKS] Iso, S., Karabali, D., Sakita, B.: Fermions in the Lowest Landau Level: Bosonization,W Infinity Algebra, Droplets, Chiral Bosons. Phys. Lett.B296, 143–150 (1992) · doi:10.1016/0370-2693(92)90816-M
[23] [IM] Itoyama, H., Matsuo, Y.:W 1+type constraints in Matrix Models at Finite N}. Phys. Lett.B262, 233–239 (1991) · doi:10.1016/0370-2693(91)91560-I
[24] [IMY] Inami, T., Matsuo, Y., Yamanaka, I.: Extended Conformal Algebras withN=1 Supersymmetry. Phys. Lett.B215, 701–705 (1988); Extended Conformal Algebras withN=2 Supersymmetry. Int. J. Mod. Phys.A5, 4441–4468 (1990) · doi:10.1016/0370-2693(88)90045-7
[25] [KR] Kac, V., Radul, A.: Quasifinite Highest Weight Modules over the Lie Algebra of Differential Operators on the Circle. Commun. Math. Phys.157, 429–457 (1993) · Zbl 0826.17027 · doi:10.1007/BF02096878
[26] [KS] Kac, V., Schwarz, A.: Geometrical Interpretation of the Partition Function of 2-D Gravity. Phys. Lett.B257,329–334 (1991) · doi:10.1016/0370-2693(91)91901-7
[27] [KYY] Kawai, T., Yamada, Y., Yang, S.-K.: Elliptic Genera andN=2 Superconformal Field Theory. Nucl. Phys.B414, 191–212 (1994) · Zbl 0980.58500 · doi:10.1016/0550-3213(94)90428-6
[28] [Li] Li, W.-L.: 2-Cocycles on the Algebra of Differential Operators. J. Algebra122, 64–80 (1989) · Zbl 0671.17010 · doi:10.1016/0021-8693(89)90237-8
[29] [M] Matsuo, Y.: Free Fields and Quasi-Finite Representation ofW 1+Algebra. Phys. Lett.B326, 95–100 (1994) · Zbl 0894.17019 · doi:10.1016/0370-2693(94)91198-3
[30] [MR] Manin, Yu., Radul, A.: A Supersymmetric Extension of the Kadmtsev-Petviashivili Hierarchy. Commun. Math. Phys.98, 65–77 (1985) · Zbl 0607.35075 · doi:10.1007/BF01211044
[31] [NS] Neveu, A., Shwarz, J.: Factorizable Dual Model of Pions. Nucl.Phys.B31, 86–112 (1971) · doi:10.1016/0550-3213(71)90448-2
[32] [O] Odake, S.: Unitary Representations ofW Infinity Algebras. Int. J. Mod. Phys.A7, 6339–6355 (1992) · Zbl 0972.81554 · doi:10.1142/S0217751X9200288X
[33] [P] Park, Q.-H.: Selfdual Gravity as a LargeN Limit of the Two-Dimensional Nonlinear Sigma Model. Phys. Lett.B238, 287–290 (1991)
[34] [PRS1] Pope, C., Romans, L., Shen, X.:W and the Racah-Wiger Algebra. Nucl. Phys.B339, 191–221 (1990) · doi:10.1016/0550-3213(90)90539-P
[35] [PRS2] Pope, C., Romans, L., Shen, X.: A New Higher Spin Algebra and the Lone Star Product. Phys. Lett.B242, 401–406 (1990) · doi:10.1016/0370-2693(90)91782-7
[36] [R] Ramond, P.: Dual Theory for Free Fermions. Phys. Rev.D3, 2415–2418 (1971) · doi:10.1103/PhysRevD.3.2415
[37] [S] Schwarz, A.: On Solutions to the String Equation. Mod. Phys. Lett.A6, 2713–2726 (1991) · Zbl 1020.37579 · doi:10.1142/S0217732391003171
[38] [SS] Schwimmer, A., Seiberg, N.: Comments on theN=2,N=3,N=4 Superconformal Algebras in Two Dimensions. Phys. Lett.B184, 191–196 (1987) · doi:10.1016/0370-2693(87)90566-1
[39] [T] Takasaki, K.: A New Approach to the Self-Dual Yang-Mills Equations. Commun. Math. Phys.94, 35–59 (1984) · Zbl 0552.58036 · doi:10.1007/BF01212348
[40] [UY] Ueno, K., Yamada, H.: Supersymmetric Extension of the Kadomtsev-Petviashvilli Hierarchy and the Universal Super Grassmann Manifold. Adv. Stud. Pure. Math.16, 373–426 (1988)
[41] [YC] Yamagishi, K., Chapline, K.: Induced 4-D Selfdual Quantum Gravity: AffineW Algebraic Approach. Class. Quant. Grav.8, 427–446 (1991) · Zbl 0736.17040 · doi:10.1088/0264-9381/8/3/005
[42] [Z] Zamolodchikov, A.: Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory. Theor. Math. Phys.65, 347–359 (1985) · doi:10.1007/BF01036128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.