×

zbMATH — the first resource for mathematics

Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme. (English) Zbl 0832.65136
A new numerical scheme, conserving the energy and charge, for nonlinear Schrödinger type equations is presented.

MSC:
65Z05 Applications to the sciences
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hasegawa, A.; Tappert, F.; Hasegawa, A., Optical solitons in fibers, Appl. phys. lett., 23, 142, (1989), Springer-Verlag Berlin
[2] Mollenauer, L.F.; Stolen, R.H.; Gordon, J.P., Phys. rev. lett., 45, 1095-1098, (1980)
[3] Dodd, R.K.; Eibeck, J.C.; Gibbon, J.D.; Morris, H.C., Solitons and nonlinear wave equation, (1982), Academic Press · Zbl 0496.35001
[4] Davydov, A.S., Solitons in molecular systems, (1985), Reidel Dordrecht · Zbl 0597.35001
[5] Zakharov, V.E.; Shabat, A.B., Soviet phys. JETP, 34, 62-69, (1972)
[6] Sanz-Serna, J.M., SIAM J. sci. stat. comput., 6, 923, (1985)
[7] Herbst, B.M.; Ablowitz, M.J., Phys. rev. lett., 62, 2065-2068, (1989)
[8] McLaughlin, D.W.; Schober, C., Physica D, 57, 447-465, (1992)
[9] Jimenez, S.; Vázquez, L., Appl. math. comput., 35, 61-93, (1990)
[10] Strauss, W.A., ()
[11] Delfour, M.; Fortin, M.; Payre, G., J. comput. phys., 44, 277-288, (1981)
[12] Taha, T.R.; Ablowitz, M., J. comput. phys., 55, 203-230, (1984)
[13] Sanz-Serna, J.M., Math. comp., 43, 21-32, (1984)
[14] Herbst, B.M.; Morris, J.Ll.; Mitchell, A.R., J. comput. phys., 60, 282-305, (1985)
[15] Guo, B.Y., J. comput. math., 4, 121, (1986)
[16] Tourigny, Y.; Morris, J., J. comput. phys., 76, 103-130, (1988)
[17] Sanz-Serna, J.M.; Verwer, J.G., IMA J. numer. anal., 6, 25-42, (1986)
[18] Strauss, W.A.; Vazquez, L., J. comput. phys., 28, 271-278, (1978)
[19] Ben-Yu, Guo; Pascual, P.J.; Rodriguez, M.J.; Vazquez, L., Appl. math. comput., 18, 1-14, (1986)
[20] Fei, Zhang; Vázquez, L., Appl. math. comput., 45, 17-30, (1991)
[21] Cloot, A.; Herbst, B.M.; Weideman, J.A.C., J. comput. phys., 86, 127-146, (1990)
[22] Miles, J.W., SIAM J. appl. math., 41, 227, (1981)
[23] Kivshar, Yu.S.; Malomed, B.A., Rev. mod. phys., 61, 765-915, (1989)
[24] Agrawall, G.P., Nonlinear fiber optics, (1989), Academic Press New York
[25] Suydam, B.R., IEEE J. quant. elect., 10/11, 837-843, (1974)
[26] Lugiato, L.A.; Oldano, C.; Narducci, L.M., J. opt. soc. am., B5, 879-888, (1988)
[27] Peranich, L.S., J. comput. phys., 68, 501-505, (1987)
[28] Menyuk, C.R., IEEE J. quant. elect., 25, 2674-2682, (1989)
[29] Trillo, S.; Wabnitz, S.; Wright, E.M.; Stegeman, G.I., Opt. lett., 13, 672-674, (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.