×

zbMATH — the first resource for mathematics

Mapping class group actions on quantum doubles. (English) Zbl 0833.16039
The author gives a short survey of counterparting the heuristic quantum field theory by mathematically rigorous constructions by applying quasitriangular Hopf algebras, or quantum groups, to replace the field theoretical machinery. An extended topological quantum field theory (TQFT) assigns to every surface \(S\) a category \({\mathcal C}_S\) and a functor \(\Phi_S:\text{Cob}_S\to{\mathcal C}_S\) [see M. Atiyah, Publ. Math., Inst. Hautes Etud. Sci. 68, 175-186 (1988; Zbl 0692.53053)]. The author defines and studies the action of operators generating the mapping class group \({\mathcal D}:=\pi_0(\text{Diff}(T,D))\) on the double \(D({\mathcal A})\) of a finite-dimensional Hopf algebra. He uses the results for a rigorous proof of the modular relationships and determines the protective phase of the universal TQFT as \(\nu^{-3}\). The structure of the representation of \(\text{SL}(2,\mathbb{Z})\) on the center of \(D(B_q)\) [see V. Turaev: Quantum Invariants of 3-Manifolds. (Publ. Inst. Rech. Math. Avancée, Strasbourg, Preprint: ISSN 0755-3390)] is considered by restricting the action on mapping class groups. The author expects to find higher dimensional algebraic representations of \(\text{SL}(2,\mathbb{Z})\) while starting from higher-rank quantum groups for which the orders of nilpotencies of central elements will be higher.

MSC:
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
17B37 Quantum groups (quantized enveloping algebras) and related deformations
57T05 Hopf algebras (aspects of homology and homotopy of topological groups)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81T05 Axiomatic quantum field theory; operator algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] [A] Atiyah, M.: Topological Quantum Field Theories. Publ. Math. IHES68, 175–186 (1989) · Zbl 0692.53053
[2] [Ab] Abe, E.: Hopf Algebras. Cambridge: Cambridge, University Press, 1977
[3] [Cr] Crane, L.: 2-d Physics and 3-d Topology. Commun. Math. Phys.135, 615–640 (1991) · Zbl 0717.57007 · doi:10.1007/BF02104124
[4] [D] Deligne, P.: Catégories Tannakiennes. The Grothendieck Festschrift, Vol. II, Progress in Mathematics, Boston. Birkhäuser, 1990
[5] [Dr0] Drinfel’d, V.G.: Quantum Groups. Proc. Inl., Congr. Math., Berkeley, 1986, Providence, R.I., Am. Math. Soc., 1987 pp. 798–820
[6] [Dr1] Drinfel’d, V.G.: On Almost Cocommutative Hopf Algebras. Leningrad Math. J.1 No. 2, 321–342 (1990)
[7] [K] Kerler, T.: Non-Tannakian Categories in Quantum Field Theory. New Symmetry Principles in Quantum Field Theory. NATO ASI Series B: Physics Vol.295, New York. Plenum Press 1992 · Zbl 1221.18003
[8] [KR] Kazhdan, D.: Reshetikhin, N.Y.: Private communication. Harvard lecture notes.
[9] [Kz] Kazhdan, D.: ”On Arithmetic Varieties”. In: Lie Groups and Their Representations. London: Adam Hilger LTD, 1971
[10] [L] Lang, S.: Algebraic Number Theory. New York Addison-Wesley, 1970 · Zbl 0211.38404
[11] [LSw] Larson, R.G.: Sweedler, M.E.: An Associative Orthogonal Bilinear Form for Hopf Algebras. Am. J. Math.91, No 1., 75–94 (1969) · Zbl 0179.05803 · doi:10.2307/2373270
[12] [Ly] Lyubashenko, V.: Tangles and Hopf Algebras in Braided Tensor Categories to appear in J. Pure Appl. Alg.; Lyubashenko, V.: Modular Transformations for Tensor Categories, to appear on J. Pure Appl. Alg.
[13] [LyM] Lyubashenko, V., Majid, S.: Braided Groups and Quantum Fourier Transform, to appear, in J. Algebra, 1991
[14] [M1] Majid, S.: Braided Matrix Structure of the Sklyanin, Algebra and of the Quantum Lorentz Group. Commun. Math. Phys.156, 607–638 (1993) · Zbl 0804.17013 · doi:10.1007/BF02096865
[15] [M2] Majid, S.: Braided-Groups. J. Pure Appl. Alg.86, 187–221 (1993) · Zbl 0797.17004 · doi:10.1016/0022-4049(93)90103-Z
[16] [Mc] MacLane, S.: Categories for the Working Mathematician. Berlin, Heidelberg, New York, Springer 1971
[17] [Rd] Radford, D.E.: The Antipode of a Finite Dimensional Hopf Algebra, is Finite. Amer. J. Math.98, 333–355 (1976) · Zbl 0332.16007 · doi:10.2307/2373888
[18] [RT0] Reshetikhin, N.Y., Turaev, V.: Ribbon Graphs and Their Invariants Derived From Quantum Groups. Commun. Math. Phys.127, 1–26 (1990) · Zbl 0768.57003 · doi:10.1007/BF02096491
[19] [RT] Reshetikhin, N.Y., Turaev, V.: Invariants of 3-Manifolds via Link Polynomials and Quantum Groups. Invent. Math103, 547–598 (1991) · Zbl 0725.57007 · doi:10.1007/BF01239527
[20] [T] Turaev, V.: Quantum Invariants of 3-Manifolds. Publication, de l’Institut de Recherche Mathématique Avancée., Strasbourg, Preprint: ISSN 0755-3390
[21] [TV] Turaev, V., Viro, O.: State Sum Invariants of 3-Manifolds and Quantum 6-j-Symbols. Topology31, 865–902 (1992) · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[22] [Wi] Witten, E.: Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys.121, 351–399 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.