Zhao, Tao Global periodic solutions for a differential delay system modeling a microbial population in the chemostat. (English) Zbl 0833.34069 J. Math. Anal. Appl. 193, No. 1, 329-352 (1995). The author studies the differential delay system modeling a microbial population in the chemostat \[ \dot s(t)= 1- s(t)- P(s(t))u(t),\quad \dot u(t)= [- 1+ P(S((t- \tau))].\tag{1} \] The author gives a sufficient conditions that the washout steady state (\(u= 0\), \(S= 1\)) is globally stable and establishes sufficient conditions for the global existence of a periodic solution by proving the existence of nontrivial periodic points of an appropriate map. The author also presents an explicit application to Michaelis-Menten kinetics. Reviewer: Li Jibin (Kunming) Cited in 31 Documents MSC: 34K13 Periodic solutions to functional-differential equations 92D25 Population dynamics (general) 34C25 Periodic solutions to ordinary differential equations Keywords:stability; differential delay system; microbial population in the chemostat; washout steady state; periodic solution; Michaelis-Menten kinetics PDF BibTeX XML Cite \textit{T. Zhao}, J. Math. Anal. Appl. 193, No. 1, 329--352 (1995; Zbl 0833.34069) Full Text: DOI OpenURL