zbMATH — the first resource for mathematics

Sobolev inequalities on homogeneous spaces. (English) Zbl 0833.46020
Summary: We consider a homogeneous space \(X= (X, d, m)\) of dimension \(\nu\geq 1\) and a local regular Dirichlet form \(a\) in \(L^2 (X, m)\). We prove that if a Poincaré inequality of exponent \(1\leq p<\nu\) holds on every pseudo-ball \(B(x,R)\) of \(X\), then Sobolev and Nash inequalities of any exponent \(q\in [p, \nu)\), as well as Poincaré inequalities of any exponent \(q\in [p, +\infty)\), also hold on \(B(x, R)\).

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
31C25 Dirichlet forms
35J70 Degenerate elliptic equations
Full Text: DOI
[1] Biroli M., Mosco U.,Sobolev inequalities for Dirichlet forms on homogeneous spaces, in ?Boundary value problems for partial differential equations and applications?, C. Baiocchi and J.L. Lions Eds., Research Notes in Applied Mathematics, Masson, 1993. · Zbl 0820.35035
[2] Biroli M., Mosco U.,Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Rend. Mat. Acc. Lincei (1994), Roma, to appear. · Zbl 0837.31006
[3] Coifman R.R., Weiss G.,Analyse harmonique sur certaines espaces homogènes, Lectures Notes in Math. 242, Springer V., Berlin-Heidelberg-New York, 1971. · Zbl 0224.43006
[4] Fukushima M.,Dirichlet forms and Markov processes, North Holland Math. Library, North Holland, Amsterdam, 1980. · Zbl 0422.31007
[5] Mosco U.,Composite media and asymptotic Dirichlet forms, J. Funct. Anal.123, 2 (1994), 368-421. · Zbl 0808.46042 · doi:10.1006/jfan.1994.1093
[6] Stampacchia G., Le problème de Dirichlet pour les equations elliptiques du second ordre à coefficient discontinus, Ann. Inst. Fourier, 15(1965), 189-258. · Zbl 0151.15401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.