×

Darboux transformations for supersymmetric Korteweg-de Vries equations. (English) Zbl 0834.35110

Summary: We consider the Darboux type transformations for the spectral problems of supersymmetric KdV systems. The supersymmetric analogies of Darboux and Darboux-Levi transformations are established for the spectral problems of Manin-Radul-Mathieu sKdV and Manin-Radul sKdV. Several Bäcklund transformations are derived for the MRM sKdV and MR sKdV systems.

MSC:

35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
58J72 Correspondences and other transformation methods (e.g., Lie-Bäcklund) for PDEs on manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Athorne, C., and Nimmo, J. J. C.:Inverse Problems 7, 648 (1991);7, 809 (1991).
[2] Chau, L. L., Shaw, J. C., and Yen, H. C.:Comm. Math. Phys. 149, 263 (1992). · Zbl 0756.35077
[3] Darboux, G.:C.R. Acad. Sci. Paris 94, 1456 (1882).
[4] Figueroa-O’Farill, J., Mas, J., and Ramos, E.:Rev. Math. Phys. 3, 479 (1991). · Zbl 0741.35066
[5] Gates, S. J. Jr., and Nishino, H.:Phys. Lett. 299B, 255 (1993).
[6] Gu, C. H.et al.:Soliton Theory and its Applications, Zhejiang Publishing House of Science and Technology (1990).
[7] Inami, T. and Kanno, H.:Comm. Math. Phys. 136, 519 (1991). · Zbl 0738.35087
[8] Kupershmidt, B. A.:Phys. Lett. 102A, 213 (1984).
[9] Levi, D.:Inverse Problems 4, 165 (1988). · Zbl 0701.34036
[10] Levi, D., Ragnisco, O., and Sym, A.;Nuovo Cim. 83B, 314 (1984).
[11] Manin, Yu., and Radul, A.:Comm. Math. Phys. 98, 65 (1985). · Zbl 0607.35075
[12] Mathieu, P.:J. Math. Phys. 29, 2499 (1988). · Zbl 0665.35076
[13] Mathieu, P.:Phys. Lett. 203B, 287 (1988); Bilal, A. and Geveis, J.:Phys. Lett. 211B, 95 (1988).
[14] Matveev, V. B. and Salle, M. A.:Darboux Transformations and Solitons, Springer-Verlag, New York, 1990. · Zbl 0744.35045
[15] Matveev, V. B.:Lett. Math. Phys. 3, 213 (1979);3, 217 (1979). · Zbl 0418.35005
[16] Mcarthur, I. N. and Yung, C. M.:Modern Phys. Lett. A8, 1739 (1993). · Zbl 1020.37574
[17] Morris, C. and Pizzocchero, L.:Comm. Math. Phys. 158, 267 (1993). · Zbl 0790.35097
[18] Oevel, W. and Popowicz, Z.:Comm. Math. Phys. 139, 441 (1991). · Zbl 0742.35063
[19] Oevel, W. and Rogers, C.:Rev. Math. Phys. 5, 299 (1993). · Zbl 0780.35101
[20] Wadati, M., Sanuki, H. and Konno, K.;Prog. Theoret, Phys. 53, 419 (1975). · Zbl 1079.35506
[21] Yamanaka, I. and Sasaki, R.:Prog. Theoret. Phys. 79, 1167 (1988).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.