# zbMATH — the first resource for mathematics

Four SEI endemic models with periodicity and separatrices. (English) Zbl 0834.92021
Summary: Periodic solutions have been found for some infectious disease models of the SI and SEI types. Here, four SEI models with either disease-reduced or uniform reproduction are examined to determine the model features that do and do not lead to periodic solutions. The two SEI models with the simple mass action incidence $$\beta XY$$ can have periodic solutions for some parameter values, but the two SEI models with the standard mass action incidence $$\lambda XY/N$$ do not have periodic solutions. For some intermediate values of $$\lambda$$ in the SEI model with incidence $$\lambda XY/N$$ and uniform reproduction, the interior equilibrium is a saddle whose stable manifold separates the attractive regions for the disease- free equilibrium and the susceptible-free equilibrium.

##### MSC:
 92D30 Epidemiology 34C25 Periodic solutions to ordinary differential equations 34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text:
##### References:
 [1] Anderson, R.M.; May, R.M., Population biology of infectious diseases 1, Nature, 280, 361-367, (1979) [2] Anderson, R.M.; May, R.M., Infectious diseases of humans: dynamics and control, (1991), Oxford Univ. Press Oxford, U.K [3] Anderson, R.M.; Jackson, H.C.; May, R.M.; Smith, A.D.M., Population dynamics of fox rabies in Europe, Nature, 289, 765-777, (1981) [4] Brauer, F., Models for the spread of universally fatal diseases, J. math. biol., 28, 451-662, (1990) · Zbl 0718.92021 [5] Brauer, F., Some infectious disease models with population dynamics and general contact rates, Diff. integ. eqs., 3, 827-836, (1990) · Zbl 0722.92014 [6] Brauer, F., Models for universally fatal diseases II, (), 57-69 · Zbl 0737.92014 [7] Bremermann, H.J.; Thieme, H.R., A competitive exclusion principle for pathogen virulence, J. math. biol., 27, 179-190, (1989) · Zbl 0715.92027 [8] Busenberg, S.N.; Hadeler, K.P., Demography and epidemics, Math. biosci., 101, 41-62, (1990) · Zbl 0751.92012 [9] Busenberg, S.N.; van den Driessche, P., Analysis of a disease transmission model in a population with varying size, J. math. biol., 28, 257-270, (1990) · Zbl 0725.92021 [10] De Jong, M.C.M.; Diekmann, O.; Heesterbeek, J.A.P., How does transmission depend on population size?, () · Zbl 0850.92042 [11] Derrick, W.R.; van den Driessche, P., A disease transmission model in a nonconstant population, J. math. biol., 31, 495-512, (1992) · Zbl 0772.92015 [12] Diekmann, O.; Kretzschmar, M., Patterns in the effects of infectious diseases on population growth, J. math. biol., 29, 539-570, (1991) · Zbl 0732.92024 [13] Fox, J.P.; Hall, C.E.; Elveback, L., Epidemiology: man and disease, (1970), Macmillan New York [14] Gao, L.Q.; Hethcote, H.W., Disease transmission models with densityâ€”dependent demographics, J. math. biol., 30, 717-731, (1992) · Zbl 0774.92018 [15] Greenhalgh, D., Some threshold and stability results for epidemic models with a density dependent death rate, Theor. pop. biol., 42, 130-151, (1992) · Zbl 0759.92009 [16] Greenhalgh, D., Some results for an SEIR epidemic model with density dependence in the death rate, IMA J. math. appl. med. biol., 9, 67-106, (1992) · Zbl 0805.92025 [17] Hale, J.K., Ordinary differential equations, (1969), Wiley-Interscience New York · Zbl 0186.40901 [18] Hethcote, H.W., Qualitative analyses of communicable disease models, Math. biosci., 28, 335-356, (1976) · Zbl 0326.92017 [19] Hethcote, H.W., Three basic epidemiological models, (), 119-144 [20] Hethcote, H.W., A thousand and one epidemic models, (), to appear · Zbl 0819.92020 [21] Hethcote, H.W.; Levin, S.A., Periodicity in epidemiological models, (), 193-211 [22] Hethcote, H.W.; Stech, H.W.; van den Driessche, P., Nonlinear oscillations in epidemic models, SIAM J. appl. math., 40, 1-9, (1981) · Zbl 0469.92012 [23] Hethcote, H.W.; Stech, H.W.; van den Driessche, P., Periodicity and stability in epidemic models: a survey, (), 65-82 [24] Jordan, D.W.; Smith, P., Nonlinear ordinary differential equations, (1987), Clarendon Press Oxford, U.K · Zbl 0611.34001 [25] Liu, W.M.; Levin, S.A.; Iwasa, Y., Influence of nonlinear incidence rates on the behavior of SIRS epidemiological models, J. math. biol., 23, 187-204, (1986) · Zbl 0582.92023 [26] Liu, W.M.; Hethcote, H.W.; Levin, S.A., Dynamical behavior of epidemiological models with nonlinear incidence rates, J. math. biol., 25, 359-380, (1987) · Zbl 0621.92014 [27] May, R.M.; Anderson, R.M., Population biology of infectious diseases II, Nature, 280, 455-461, (1979) [28] Mena-Lorca, J., Periodicity and stability in epidemiological models with disease-related deaths, () [29] Mena-Lorca, J.; Hethcote, H.W., Dynamic models of infectious diseases as regulators of population sizes, J. math. biol., 30, 693-716, (1992) · Zbl 0748.92012 [30] Miller, R.K.; Michel, A.N., Ordinary differential equations, (1982), Academic New York · Zbl 0499.34024 [31] Mollison, D., Simplifying simple epidemic models, Nature, 310, 224-225, (1984) [32] Mollison, D., Sensitivity analysis of simple endemic models, (), 223-234 [33] Pugliese, A., Population models for diseases with no recovery, J. math. biol., 28, 65-82, (1990) · Zbl 0727.92023 [34] Pugliese, A., An SEI epidemic model with varying population size, (), 121-138 · Zbl 0735.92022 [35] Swart, J.H., Hopf bifurcation and stable limit cycle behavior in the spread of infectious disease, with special application to fox rabies, Math. biosci., 95, 199-207, (1989) · Zbl 0687.92013 [36] Thieme, H.R., Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. biosci., 111, 99-130, (1992) · Zbl 0782.92018 [37] Thieme, H.R., Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. math. anal., 24, 407-435, (1993) · Zbl 0774.34030 [38] Zhou, J., An epidemiological model with population size dependent incidence, Rocky mt. J. math., 24, 1, 429-445, (1994) · Zbl 0799.92020 [39] Zhou, J.; Hethcote, H.W., Population size dependent incidence in models for diseases without immunity, J. math. biol., 32, 809-834, (1994) · Zbl 0823.92027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.