×

Modelling and simulation of high-speed machining. (English) Zbl 0835.73077

Summary: A Lagrangian finite element model of orthogonal high-speed machining is developed. Continuous remeshing and adaptive meshing are the principal tools which we employ for sidestepping the difficulties associated with deformation-induced element distortion, and for resolving fine-scale features in the solution. The model accounts for dynamic effects, heat conduction, mesh-on-mesh contact with friction, and full thermo- mechanical coupling. In addition, a fracture model has been implemented which allows for arbitrary crack initiation and propagation in the regime of shear localized chips. The model correctly exhibits the observed transition from continuous to segmented chips with increasing tool speed.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] ’Cutting tools’, Prod. Eng. Mag., 40-44 (May, 1992).
[2] Tay, Int. J. Mach. Tool Des. Res. 16 pp 335– (1976)
[3] Tay, Proc. Instn. Mech. Engrs. 188 pp 627– (1974)
[4] Lin, J. Eng. Mater. Technol. 114 pp 289– (1992)
[5] Strenkowski, J. Eng. Ind. 107 pp 349– (1985)
[6] Komvopoulos, J. Eng. Ind. 113 pp 253– (1991)
[7] Sekhon, Eng. Comput. 10 pp 31– (1993)
[8] ’Manfacturing Processes for Engineering Materials’, Addison-Wesley, Reading, MA, (1984).
[9] Pian, Int. j. numer. methods eng. 20 pp 1685– (1984)
[10] Belytschko, Comput. Methods Appl. Mech. Eng. 54 pp 279– (1986)
[11] Dvorkin, Eng. Comput. 6 pp 217– (1989)
[12] Simó, Int. j. numer. methods eng. 29 pp 1595– (1990)
[13] Belytschko, Comput. Methods Appl. Mech. Eng. 88 pp 311– (1991)
[14] Simó, Int. j. numer. methods eng. 33 pp 1413– (1992)
[15] Simó, Comput. Methods Appl. Mech. Eng.
[16] Hughes, Comput. Methods Appl. Mech. Eng. 29 pp 329– (1981)
[17] ’Arbitrary Lagrangian–Eulerian finite element methods’, in and (eds.), Computational Methods for Transient Analysis, North-Holland, New York, 1983, pp. 473-516.
[18] Liu, Comput. Methods Appl. Mech. Eng. 58 pp 227– (1986)
[19] Liu, Comput. Methods Appl. Mech. Eng. 68 pp 259– (1988)
[20] Benson, Comput. Methods Appl. Mech. Eng. 72 pp 305– (1989)
[21] Ghosh, Comput. Method Appl. Mech. Eng. 86 pp 127– (1991)
[22] Benson, Comput. Methods Appl. Mech. Eng. 99 pp 235– (1992)
[23] Thompson, J. numer. methods fluids 6 pp 749– (1986)
[24] Thompson, Int. j. numer. methods eng. 23 pp 177– (1988)
[25] and , ’On the modelling of 2D metal forming processes using the flow formulation and the pseudo-concentration technique’, in and (eds.), Proc. 3rd Int. Conf. Comput. Plasticity, Pineridge Press Swansea, U.K., 1992, pp. 1037-1051.
[26] and , ’Metallurgical appraisal of wear mechanisms and processes on high-speed-steel cutting tools’, Metals Technol., 13-23 (1974).
[27] Ramalingam, Metall. Trans. 4 pp 1103– (1973)
[28] Komanduri, J. Eng. Ind. 103 pp 33– (1981)
[29] Komanduri, J. Eng. Ind. 104 pp 121– (1982)
[30] ’The Finite Element Method’, Prentice-Hall, Englewood Cliffs, N.J., 1987.
[31] Hughes, J. Appl. Mech. 50 pp 1033– (1983)
[32] ’An overview of semidiscretization and time integration procedures’, in and (eds.), Computational Methods for Transient Analysis, North-Holland Amsterdam, 1983, pp. 1-65.
[33] ’Analysis of transient algorithms with particular reference to stability behavior’, in and (eds.), Computational Methods for Transient Analysis, North-Holland Amsterdam 1983, pp 67-155.
[34] Mathur, Modelling Simul. Mater. Sci. Eng. 1 pp 467– (1993)
[35] , and , ’Industrial application of implicit and explicit finite element methods to forming processes’, in AMD-Vol. 156, Numerical Methods for Simulation of Industrial Metal Forming Processes, ASME, New York, 1992.
[36] Belytschko, Comput. Methods Appl. Mech. Eng. 49 pp 181– (1985)
[37] Belytschko, Comput. Methods Appl. Mech. Eng. 17/18 pp 259– (1989)
[38] Belytschko, Comput. Struct. 42 pp 271– (1992)
[39] and , ’PRONTO 2D: a two-dimensional transient solid dynamics program’, Sandia National Laboratories, SAND86-0594, 1987.
[40] Klopp, Mech. Mater. 4 pp 375– (1985)
[41] Taylor, Philos. Trans. Roy. Soc. London A230 pp 323– (1931)
[42] and , ’Metal Forming and the Finite Element Method’, Oxford University Press, Oxford (1989).
[43] and , ’Partitioned analysis of coupled systems’, in and (eds.), Computational Methods for Transient Analysis, North-Holland, Amsterdam 1983, pp. 157-219.
[44] Lemonds, Mech. Mater. 5 pp 339– (1986)
[45] Armero, Comput. Methods Appl. Mech. Eng. 99 pp 61– (1992)
[46] Armero, Int. J. Plasticity 9 pp 749– (1993)
[47] Cuitiño, Eng. Comput. 9 pp 437– (1992)
[48] Weber, Comput. Methods Appl. Mech. Eng. 79 pp 173– (1990)
[49] Eterovic, Int. j. numer. methods eng. 30 pp 1099– (1990)
[50] and , ’Pressure-shear plate impact testing’, Metals Handbook, 9th Edn, 8, 230-239 (1985).
[51] Tong, J. Mech. Phys. Solids 40 pp 1251– (1992)
[52] Ritchie, Metall. Trans. 16A pp 233– (1985)
[53] Ritchie, J. Mech. Phys. Solids 21 pp 395– (1973)
[54] Orowan, Rep. Prog. Phys. 12 pp 185– (1948)
[55] Knott, J. Iron Steel Inst. 204 pp 104– (1966)
[56] Erdogan, J. Basic Eng. 85 pp 519– (1963)
[57] Rogers, Trans. Metall. Soc. A.I.M.E. 218 pp 498– (1960)
[58] Gurland, Tran. Am. Soc. Metals 56 pp 442– (1963)
[59] Cox, Metall. Trans. 5 pp 1457– (1974)
[60] Clayton, Metal. Sci. 10 pp 63– (1976)
[61] Pellisier, Eng. Fracture Mech. 1 pp 55– (1968)
[62] Green, Trans. ASME 98
[63] J. Engng Matl Tech., 37-46 (1976).
[64] Rawal, Metall. Trans. A 8A pp 691– (1977)
[65] and , ’The role of large crack tip geometry changes in planes strain fracture’, in , , and , (eds.), Inelastic Behavior of Solids, 641 McGraw-Hill, New York, 1970.
[66] Rice, J. Mech. Phys. Solids 17 pp 201– (1969)
[67] Ritchie, Metall. Trans. 10A pp 1557– (1979)
[68] Ortiz, Comput. Methods Appl. Mech. Eng. 90 pp 781– (1991)
[69] Sloan, Adv. Eng. Software 9 pp 34– (1987)
[70] Nagtegaal, Comput. Methods Appl. Mech. Eng. 4 pp 469– (1974)
[71] Cuitiño, Modelling Simul. Mater. Sci. Eng. 1 pp 225– (1992)
[72] Xu, J. Mech. Phys. Solids
[73] Shih, Int. j. numer. methods eng. 36 pp 1487– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.