Vaillant, Jean Systems of partial differential equations and classes of Gevrey. (Systèmes d’équations aux dérivées partielles et classes de Gevrey.) (French. Abridged English version) Zbl 0836.35033 C. R. Acad. Sci., Paris, Sér. I 320, No. 12, 1469-1474 (1995). Summary: We consider a square matrix \(h\) of analytic linear partial differential operators; we define invariant conditions \(LG\) which depend only on \(h\) and which permit to determine the Gevrey classes where the Cauchy problem is well posed. Cited in 1 ReviewCited in 1 Document MSC: 35F10 Initial value problems for linear first-order PDEs 35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs Keywords:well posedness of the Cauchy problem; analytic linear partial differential operators; Gevrey classes PDF BibTeX XML Cite \textit{J. Vaillant}, C. R. Acad. Sci., Paris, Sér. I 320, No. 12, 1469--1474 (1995; Zbl 0836.35033) OpenURL