zbMATH — the first resource for mathematics

Small-gain theorem for ISS systems and applications. (English) Zbl 0836.93054
A concept of input-to-output practical stability of smooth nonlinear control systems is introduced. A generalized small-gain theorem and a gain assignment theorem are proved. Applications are obtained:
– A sufficient condition for global asymptotic stability (in the spirit of the center manifold reduction theorem);
– Sufficient conditions for global asymptotic stabilization (via partial-state feedback) for linear systems with nonlinear stable dynamic perturbations and for a class of nonlinear control systems composed of a chain of dynamically perturbed integrators.

93D25 Input-output approaches in control theory
93D15 Stabilization of systems by feedback
93D20 Asymptotic stability in control theory
Full Text: DOI
[1] B. R. Barmish, M. Corless, and G. Leitmann, A new class of stabilizing controllers for uncertain dynamical systems,SIAM J. Control Optim.,21 (1983), 246-255. · Zbl 0503.93049
[2] C. Byrnes and A. Isidori, Asymptotic stabilization of minimum phase nonlinear systems,IEEE Trans. Automat. Control,36 (1991), 1122-1137. · Zbl 0758.93060
[3] Y. H. Chen and G. Leitmann, Robustness of uncertain systems in the absence of matching assumptions,Internat. J. Control,45 (1987), 1527-1542. · Zbl 0623.93023
[4] C. Desoer and M. Vidyasagar,Feedback Systems: Input-Output Properties, Academic Press, New York, 1975. · Zbl 0327.93009
[5] W. Evans,Control Systems Dynamics, McGraw-Hill, New York, 1953. · Zbl 0051.01102
[6] R. A. Freeman and P. V. Kokotovic, Backstepping design of robust controllers for a class of nonlinear systems,Proc. IFAC NOLCOS ’92 Symp., pp. 307-312, Bordeaux, June 1992.
[7] J. K. Hale,Ordinary Differential Equations, Krieger, 1980. · Zbl 0433.34003
[8] A. Isidori,Nonlinear Control Systems, 2nd edn., Springer-Verlag, Berlin, 1989. · Zbl 0693.93046
[9] Z. P. Jiang, Quelques résultats de stabilisation robuste. Applications à la commande, Docteur en Mathématiques et Automatique, Ecole des Mines de Paris, 1993.
[10] Z. P. Jiang and L. Praly, Technical results for the study of robustness of Lagrange stability,Systems Control Lett.,23 (1994), 67-78. · Zbl 0800.93997
[11] I. Kanellakopoulos, P. V. Kokotovi?, and A. S. Morse, Systematic design of adaptive controllers for feedback linearizable systems,IEEE Trans. Automat. Control,36 (1991), 1241-1253. · Zbl 0768.93044
[12] I. Kanellakopoulos, P. V. Kokotovi?, and A. S. Morse, A toolkit for nonlinear feedback design,Systems Control Lett.,18 (1992), 83-92. · Zbl 0743.93039
[13] H. K. Khalil,Nonlinear Systems, Macmillan, New York, 1992.
[14] A. Liapounoff,Problème général de la stabilité du mouvement, Annales de la Faculté des Sciences de Toulouse, deuxième série, Tome IX, 1907, Traduit du Russe par M. Édouard Davaux.
[15] Y. Lin, Lyapunov function techniques for stabilization, Ph.D. thesis, Rutgers University, 1992.
[16] Z. Lin and A. Saberi, Robust semi-global stabilization of minimum phase input-output linearizable systems via partial state feedback,IEEE Trans. Automat. Control, submitted. · Zbl 0831.93057
[17] Y. Lin, E. D. Sontag, and Y. Wang, Recent results on Lyapunov theoretic techniques for nonlinear stability. Report SYCON-93-09.
[18] I. M. Y. Mareels and D. J. Hill, Monotone stability of nonlinear feedback systems,J. Math. Systems Estim. Control,2 (1992), 275-291. · Zbl 0776.93039
[19] R. Marino and P. Tomei, Dynamic output feedback linearization and global stabilization,Systems Control Lett.,17 (1991), 115-121. · Zbl 0747.93069
[20] R. Marino and P. Tomei, Self-tuning stabilization of feedback linearizable systems,Proc. IF AC AC ASP ’92, pp. 9-14, Grenoble, 1992.
[21] L. Praly and Z. P. Jiang, Stabilization by output feedback for systems with ISS inverse dynamics,Systems Control Lett.,21 (1993), 19-33. · Zbl 0784.93088
[22] L. Rosier, Homogeneous Lyapunov functions for homogeneous continuous vector fields,Systems Control Lett.,19 (1992), 467-473. · Zbl 0762.34032
[23] A. Saberi, P. V. Kokotovi?, and H. Sussmann, Global stabilization of partially linear composite systems,SIAM J. Control Optim.,28 (1990), 1491-1503. · Zbl 0719.93071
[24] M. G. Safonov,Stability and Robustness of Multivariable Feedback Systems, MIT Press, Cambridge, MA, 1980. · Zbl 0552.93002
[25] E. D. Sontag, Smooth stabilization implies coprime factorization,IEEE Trans. Automat. Control,34 (1989), 435-443. · Zbl 0682.93045
[26] E. D. Sontag, Remarks on stabilization and input-to-state stability,Proc. 28th IEEE Conf. on Decision and Control, pp. 1376-1378, 1989.
[27] E. D. Sontag, Further facts about input-to-state stabilization,IEEE Trans. Automat. Control,35 (1990), 473-476. · Zbl 0704.93056
[28] H. Sussmann, Limitations on the stabilizability of globally minimum phase systems,IEEE Trans. Automat. Control,35 (1990), 117-119. · Zbl 0708.93070
[29] H. Sussmann and P. Kokotovi?, The peaking phenomenon and the global stabilization of nonlinear systems,IEEE Trans. Automat. Control,36 (1991), 424-440. · Zbl 0749.93070
[30] A. Teel, Semi-global stabilization of minimum phase nonlinear systems in special normal forms,Systems Control Lett.,19 (1992), 187-192. · Zbl 0763.93039
[31] A. Teel and L. Praly, Tools for semi-global stabilization by partial state and output feedback,SIAM J. Control Optim., to appear. · Zbl 0843.93057
[32] J. Tsinias, Sufficient Lyapunov-like conditions for stabilization,Math. Control Signals Systems,2 (1989), 343-357. · Zbl 0688.93048
[33] J. Tsinias, Sontag’s ?input to state stability condition? and the global stabilization using state detection,Systems Control Lett.,20 (1993), 219-226. · Zbl 0768.93063
[34] J. Tsinias, Versions of Sontag’s ?input to state stability condition? and the global stabilization problem,SIAM J. Control Optim.,31 (1993), 928-941. · Zbl 0788.93076
[35] M. Vidyasagar and A. Vannelli, New relationships between input-output and Lyapunov stability,IEEE Trans. Automat. Control,27 (1982), 481-483. · Zbl 0479.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.