×

A general algorithm for compressible and incompressible flow. I: The split, characteristic-based scheme. (English) Zbl 0837.76043

Summary: The paper outlines the formulation of a novel algorithm which can be used for the solution of both compressible and incompressible Navier-Stokes or Euler equations. Full incompressibility can be dealt with if the algorithm is used in its semi-explicit form, and its structure permits arbitrary interpolation functions to be used avoiding the Babuška- Brezzi restriction. In a fully explicit version it introduces a rational form of balancing dissipation avoiding the use of arbitrary parameters and forms for this.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76D05 Navier-Stokes equations for incompressible viscous fluids
76B47 Vortex flows for incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lax, Comm. Pure Appl. Math. 13 pp 217– (1960)
[2] Donea, Int. j. numer. methods fluids 4 pp 1043– (1984)
[3] , and , ’Finite elements in fluid mechanics–A decade of progress’, Finite Element in Fluids, Vol. 5, Ch. 1 in et al., (eds.), Wiley, New York, 1984, pp. 1-26.
[4] Löhner, Int. j. numer. methods fluids 4 pp 1043– (1984)
[5] Löhner, Comput. Methods Appl. Mech. Eng. 51 pp 441– (1985)
[6] and , Finite Element Method, Vol. II, 4th edn, McGraw-Hill, New York 1991.
[7] Chorin, J. Comput. Phys. 2 pp 12– (1967)
[8] Chorin, Math. Comput. 23 (1969)
[9] Patankar, Int. J. Heat Mass Transfer 15 pp 1787– (1972)
[10] Comini, Numer. Heat Transfer 5 pp 463– (1972)
[11] and , ’Finite element analysis of incompressible fluid flow incorporating equal order pressure and velocity interpolation’, in , (eds.), Numerical Methods in Laminar and Turbulent Flow, Pentech Press, Plymouth, 1978.
[12] Donea, Comput. Methods Appl. Mech. Eng. 33 pp 53– (1982)
[13] Gresho, Int. j. numer. methods fluids 4 pp 557– (1984)
[14] Kim, J. Comput. Phys. 59 pp 308– (1985)
[15] Kawahara, Int. j. numer. methods fluids 5 pp 981– (1985)
[16] Rice, Comput. Methods Appl. Mech. Eng. 58 pp 135– (1986)
[17] Ramaswamy, Comput Fluids 16 pp 349– (1988)
[18] Shimura, Struct. Eng./Earthquake Eng. 5 pp 255– (1988)
[19] Yiang, Comput. Mech. 11 pp 355– (1993)
[20] Zienkiewicz, Comput. Methods Appl. Mech. Eng. 78 pp 105– (1990)
[21] ’Explicit or semi-explicit general algorithm for compressible and incompressible flows with equal finite element interpolation’, Report 90/5, Chalmers Univ. of Technology, 1990.
[22] Zienkiewicz, Int. j. numer. methods eng. 35 pp 457– (1992)
[23] Zienkiewicz, Math. Modelling and Scientific Comp. 1 pp 31– (1993)
[24] Hughes, Comput. Methods Appl. Mech. Eng. 59 pp 85– (1986)
[25] Sampaio, Int. j. numer. methods eng. 31 pp 1135– (1991)
[26] Zienkiewicz, Int. j. numer. methods eng. 32 pp 1189– (1991)
[27] Codina, Comput. Methods Appl. Mech. Eng. 110 pp 325– (1993)
[28] ’A shock-capturing anisotropic diffusion for the element solution of the diffusion-convection-reaction equation’, in , , and (eds.), Proc. of the VIII Int. Conf. on Finite Elements in Fluids, Part I. CIMNE/Pineridge Press, Swansea, 1993, pp. 67-75. · Zbl 0875.76210
[29] Galeão, Comput. Methods Appl. Mech. Eng. 68 pp 83– (1988)
[30] Johnson, Math. Comput. 49 pp 427– (1987)
[31] Shakib, Comput. Methods Appl. Mech. Eng. 89 pp 141– (1991)
[32] Codina, Int. j. numer. methods eng. 36 pp 1445– (1993)
[33] Peraire, Int. j. numer. methods eng. 26 pp 2135– (1988)
[34] Zienkiewicz, Int. j. numer. methods fluids 20 pp 1085–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.