×

zbMATH — the first resource for mathematics

On the stability of radial solutions of the Ginzburg-Landau equation. (English) Zbl 0839.35011
Consider the following boundary value problem: \[ -\Delta u= {1\over \varepsilon^2} u(1- |u|^2)\quad\text{in} \quad G,\qquad u= g\quad\text{on} \quad \partial G. \] The author derives the stability of radial solutions for \(\varepsilon= 1\) and studies critical values of \(\varepsilon\) for the stability of radial solutions.
Reviewer: A.Tsutsumi (Osaka)

MSC:
35B35 Stability in context of PDEs
35J65 Nonlinear boundary value problems for linear elliptic equations
35Q72 Other PDE from mechanics (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI