Buslaev, V. S.; Perel’man, G. S. On the stability of solitary waves for nonlinear Schrödinger equations. (English) Zbl 0841.35108 Uraltseva, N. N. (ed.), Nonlinear evolution equations. Providence, RI: American Mathematical Society. Transl., Ser. 2, Am. Math. Soc. 164 (22), 75-98 (1995). The paper is devoted to the stability problem for the nonlinear Schrödinger equation \[ i\vec\psi_t= [- \partial^2_x+ V(\psi_1 \psi_2)] \sigma_3 \vec\psi, \] where \(\vec\psi={\psi_1(x,t)\choose\psi_2(x,t)}\), \(\sigma_3=\left(\begin{smallmatrix} 1 & 0\\ 0 & -1\end{smallmatrix}\right)\) and \(V\) is a real-valued function with \[ \begin{aligned} V(\xi) & \geq - V_1 \xi^q,\quad V_1> 0,\quad \xi\geq 1,\quad q< 2,\\ V(\xi) & = V_2 \xi^p(1+ O(\xi)),\quad p> 0,\quad \xi\to 0.\end{aligned} \] {}.For the entire collection see [Zbl 0824.00037]. Reviewer: L.A.Sakhnovich (Odessa) Cited in 3 ReviewsCited in 80 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35Q51 Soliton equations Keywords:linearization; solitons PDF BibTeX XML Cite \textit{V. S. Buslaev} and \textit{G. S. Perel'man}, Transl., Ser. 2, Am. Math. Soc. 164, 75--98 (1995; Zbl 0841.35108) OpenURL