×

zbMATH — the first resource for mathematics

Output feedback \(H_ \infty\) control of systems with parameter uncertainty. (English) Zbl 0841.93014
Summary: This paper deals with \(H_\infty\) control problem for systems with parametric uncertainty in all matrices of the system and output equations. The parametric uncertainty under consideration is of a linear fractional form. Both the continuous and the discrete-time cases are considered. Necessary and sufficient conditions for quadratic stability with \(H_\infty\) disturbance attenuation are obtained.

MSC:
93B36 \(H^\infty\)-control
93C99 Model systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/9.210145 · Zbl 0791.93064 · doi:10.1109/9.210145
[2] DOI: 10.1016/0167-6911(92)90108-5 · Zbl 0743.93038 · doi:10.1016/0167-6911(92)90108-5
[3] DOI: 10.1109/9.293205 · Zbl 0812.93029 · doi:10.1109/9.293205
[4] DOI: 10.1109/9.50357 · Zbl 0707.93060 · doi:10.1109/9.50357
[5] DOI: 10.1109/9.45179 · Zbl 0705.93060 · doi:10.1109/9.45179
[6] DOI: 10.1016/0167-6911(86)90077-0 · Zbl 0629.90103 · doi:10.1016/0167-6911(86)90077-0
[7] PETERSON , I. R. , MCFARLANE , D. C. , and ROTEA , M. A. , 1993 , Optimal guaranteed cost control of discrete-time uncertain systems . Proceedings of the 12th IFAC World Congress , Sydney , pp. 407 – 410 .
[8] DOI: 10.1080/00207178908953510 · Zbl 0695.93034 · doi:10.1080/00207178908953510
[9] DOI: 10.1109/9.237647 · Zbl 0787.93025 · doi:10.1109/9.237647
[10] DOI: 10.1016/0167-6911(90)90088-C · Zbl 0698.93054 · doi:10.1016/0167-6911(90)90088-C
[11] DOI: 10.1109/9.151120 · Zbl 0764.93067 · doi:10.1109/9.151120
[12] DOI: 10.1016/0167-6911(88)90080-1 · Zbl 0666.93025 · doi:10.1016/0167-6911(88)90080-1
[13] ZHOU , K. , KHARGONEKAR , P. P. , STOUSTRUP , J. , and NIEMANN , H. H. , 1992 , Robust stability and performance of uncertain systems in state space . Proceedings of the 31st IEEE Conference on Decision and Control , Tucson , Arizona , U.S.A. , pp. 662 – 667 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.