Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I: One-dimensional flow. (English) Zbl 0842.76053

The author gives a detailed analysis of the limiting behavior of solutions of the Euler equations for compressible subsonic flow, with the Mach number approaching zero. A semi-implicit low Mach number extension of a Godunov-type MUSCL scheme for compressible flow is constructed with the aid of a single time but multiple space scales asymptotic analysis, which reveals three distinct roles of the pressure, namely its role as a thermodynamic variable, an acoustic wave amplitude, and the balance for the inertial forces in small scale flow structures. In addition to the development of the scheme, the paper contains a critical survey of the literature pertaining to the subject. It can be expected that the results of the analysis will definitely help to clarify alternative approaches in the development of solutions for incompressible flows and improve the rate of convergence for low Mach number solutions.
Reviewer: E.Krause (Aachen)


76M20 Finite difference methods applied to problems in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics


Full Text: DOI


[1] Lee, J. H.S.; Moen, I. O., Prog. Energy Combust. Sci., 6, 359 (1980)
[2] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Hemisphere: Hemisphere New York · Zbl 0595.76001
[3] Casulli, V.; Greenspan, D., Int. J. Numer. Methods. Fluids, 4, 1001 (1984)
[4] Patnaik, G.; Guirguis, R. H.; Boris, J. P.; Oran, E. S., J. Comput. Phys., 71 (1987)
[5] Merkle, C. L.; Choi, Y.-H., AIAA J., 25, 831 (1987)
[6] Abarbanel, S.; Duth, P.; Gottlieb, D., Comput. & Fluids, 17, 1 (1989)
[7] Fernandez, G., (Dissertation (5 juin 1989), l’université de Nice: l’université de Nice Washington, DC)
[8] Zienkiewicz, O. C.; Szmeltzer, J.; Peraire, J., Comput. Methods Appl. Mech. Eng., 78, 105 (1990)
[9] Gustafsson, B.; Stoor, H., SIAM J. Numer. Anal., 28, 1523 (1991)
[10] Sesterhenn, J.; Müller, B.; Thomann, H., Computation of Compressible Low Mach Number Flow, (Hirsch; etal., Computational Fluid Dynamics, Vol. 2 (1992), Elsevier), 829
[11] van Leer, B., J. Comput. Phys., 14, 361 (1979)
[12] LeVeque, R. J., (Numerical Methods for Conservation Laws (1990), Birkhäuser)
[13] Klainerman, S.; Majda, A. J., Commun. Pure Appl. Math., 35, 629 (1982)
[14] Majda, A. J.; Sethian, J., Combust. Sci. Technol., 42, 185 (1985)
[15] Hunter, J. K.; Majda, A. J.; Rosales, R. R., Stud. Appl. Math., 75, 187 (1986)
[16] Klein, R.; Peters, N., J. Fluid Mech., 187, 197 (1988)
[18] Majda, A. J.; Lamb, K., (IMA Preprint Series No. 664 (1990), Inst. of Mathematics and its Applications: Inst. of Mathematics and its Applications Basel)
[19] W. E., Commun. Part. Differential Eqs., 17, 347 (1992)
[20] Matalon, M.; Matkowski, B. J., J. Fluid Mech., 124, 239 (1982)
[21] Chorin, A. J., Math. Comput., 22, 745 (1968)
[22] Klein, R.; Munz, C. D., Proceedings, Intl. Conf. on Numer. Methods in Cont. Mech., (The Multiple Pressure Variable (MPV) Approach for the Numerical Approximation of Weakly Compressible Fluid Flow. The Multiple Pressure Variable (MPV) Approach for the Numerical Approximation of Weakly Compressible Fluid Flow, Prague (June 1994)), to appear
[23] Schneider, W., Mathematische Methoden in der Strömungsmechanik (1978), Vieweg: Vieweg University of Minnesota, Minneapolis · Zbl 0369.76001
[24] LeVeque, R. J., SIAM J. Numer. Anal., 22, 1051 (1985)
[25] Harten, A.; Lax, P.; van Leer, B., SIAM Rev., 25, 35 (1983)
[26] Einfeldt, B., SIAM J. Numer. Anal., 25, 294 (1988)
[28] Roe, P. L., J. Comput. Phys., 43, 357 (1981)
[30] Colella, P., High-Resolution Numerical Methods for Low Mach Number Flows, (Proceedings, 5th Intl. Conf. on Hyperbolic Systems, SUNY. Proceedings, 5th Intl. Conf. on Hyperbolic Systems, SUNY, Stony Brook (June 1994)), to appear
[31] Lange, K., Diplomarbeit (Physik) (1993), Institut für Technische Mechanik RWTH: Institut für Technische Mechanik RWTH Wiesbaden, (unpublished)
[32] Ebin, D. G., Commun. Pure Appl. Math., 15, 451 (1982)
[33] Schochet, S., J. Diff. Equations, 75, 1 (1988)
[34] Embid, P., Commun. Partial Diff. Equations, 12, 1227 (1987) · Zbl 0632.76075
[35] Embid, P., Commun. Partial Diff. Equations, 19, 1249 (1989)
[36] Kreiss, H.-O., Commun. Pure Appl. Math., 33, 399 (1980)
[37] Tadmor, E., Commun. Pure Appl. Math., 35, 839 (1982)
[38] Majda, A. J.; Rosales, R. R.; Schönbeck, M., Stud. Appl. Math., 79, 205 (1988)
[39] Majda, A. J.; Rosales, R. R., SIAM J. Appl. Math., 47, 1017 (1987)
[40] Almgren, R. F., SIAM J. Appl. Math., 51, 351 (1991)
[41] van Kan, J., SIAM J. Sci. Stat. Comput., 7, 870 (1986)
[42] Noll, B., (Numerische Strömungsmechanik (1993), Springer-Verlag: Springer-Verlag Aachen) · Zbl 0795.76001
[43] Bell, J. B.; Colella, P.; Glaz, H. M., J. Comput. Phys., 85, 257 (1989)
[45] Munz, C. D., On the Comparison and Construction of Two-Step Schemes for the Euler Equations, (Notes on Numerical Fluid Mechanics, Vol. 14 (1986), Vieweg: Vieweg Berlin Heidelberg) · Zbl 0796.76057
[46] Colella, P., SIAM J. Sci. Stat. Comput., 6, 104 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.