George, A.; Veeramani, P. On some results in fuzzy metric spaces. (English) Zbl 0843.54014 Fuzzy Sets Syst. 64, No. 3, 395-399 (1994). Summary: We define a Hausdorff topology on a fuzzy metric space introduced by I. Kramosil and J. Michálek [Kybernetika 11, 336-344 (1975; Zbl 0319.54002)]and prove some known results of metric spaces including Baire’s theorem for fuzzy metric spaces. Cited in 50 ReviewsCited in 444 Documents MSC: 54A40 Fuzzy topology 54E35 Metric spaces, metrizability Keywords:fuzzy metric space Citations:Zbl 0319.54002 PDF BibTeX XML Cite \textit{A. George} and \textit{P. Veeramani}, Fuzzy Sets Syst. 64, No. 3, 395--399 (1994; Zbl 0843.54014) Full Text: DOI Link References: [1] Zi-ke, Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl., 86, 74-95 (1982) · Zbl 0501.54003 [2] Erceg, M. A., Metric spaces in fuzzy set theory, J. Math. Anal. Appl., 69, 205-230 (1979) · Zbl 0409.54007 [3] Kaleva, O.; Seikkala, S., On fuzzy metric spaces, Fuzzy Sets and Systems, 12, 215-229 (1984) · Zbl 0558.54003 [4] Kramosil, O.; Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetica, 11, 326-334 (1975) [5] Limaye, B. V., Functional Analysis (1981), Wiley Eastern Ltd: Wiley Eastern Ltd New Delhi, India [6] Grabiec, Mariusz, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27, 385-389 (1988) · Zbl 0664.54032 [7] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. Math., 10, 314-334 (1960) · Zbl 0091.29801 [8] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 338-353 (1965) · Zbl 0139.24606 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.