×

zbMATH — the first resource for mathematics

On two-block-factor sequences and one-dependence. (English) Zbl 0843.60036
Summary: The distributions of two-block-factors \((f(\eta_i, \eta_{i + 1})\); \(i \geq 1)\) arising from i.i.d. sequences \((\eta_i; i \geq 1)\) are observed to coincide with the distributions of the superdiagonals \((\zeta_{i, i+1}; i \geq 1)\) of jointly exchangeable and dissociated arrays \((\zeta_{i,j}; i, j \geq 1)\). An inequality for superdiagonal probabilities of the arrays is presented. It provides, together with the observation, a simple proof of the fact that a special one-dependent Markov sequence of J. Aaronson, D. Gilat and M. Keane [J. Theor. Probab. 5, No. 3, 545-561 (1992; Zbl 0754.60070)] is not a two-block-factor.
Reviewer: Reviewer (Berlin)

MSC:
60G10 Stationary stochastic processes
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60E15 Inequalities; stochastic orderings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jon Aaronson, David Gilat, and Michael Keane, On the structure of 1-dependent Markov chains, J. Theoret. Probab. 5 (1992), no. 3, 545 – 561. · Zbl 0754.60070 · doi:10.1007/BF01060435 · doi.org
[2] Jon Aaronson, David Gilat, Michael Keane, and Vincent de Valk, An algebraic construction of a class of one-dependent processes, Ann. Probab. 17 (1989), no. 1, 128 – 143. · Zbl 0681.60038
[3] David J. Aldous, Representations for partially exchangeable arrays of random variables, J. Multivariate Anal. 11 (1981), no. 4, 581 – 598. · Zbl 0474.60044 · doi:10.1016/0047-259X(81)90099-3 · doi.org
[4] David J. Aldous, Exchangeability and related topics, École d’été de probabilités de Saint-Flour, XIII — 1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1 – 198. · Zbl 0562.60042 · doi:10.1007/BFb0099421 · doi.org
[5] Robert M. Burton, Marc Goulet, and Ronald Meester, On 1-dependent processes and \?-block factors, Ann. Probab. 21 (1993), no. 4, 2157 – 2168. · Zbl 0788.60049
[6] G. K. Eagleson and N. C. Weber, Limit theorems for weakly exchangeable arrays, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 1, 123 – 130. · Zbl 0387.60026 · doi:10.1017/S0305004100054967 · doi.org
[7] A. Gandolfi, M. Keane, and V. de Valk, Extremal two-correlations of two-valued stationary one-dependent processes, Probab. Theory Related Fields 80 (1989), no. 3, 475 – 480. · Zbl 0638.60056 · doi:10.1007/BF01794435 · doi.org
[8] D. N. Hoover, Row-column exchangeability and a generalized model for probability, Exchangeability in probability and statistics (Rome, 1981) North-Holland, Amsterdam-New York, 1982, pp. 281 – 291. · Zbl 0495.60040
[9] I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. · Zbl 0219.60027
[10] Olav Kallenberg, Some new representations in bivariate exchangeability, Probab. Theory Related Fields 77 (1988), no. 3, 415 – 455. · Zbl 0621.60044 · doi:10.1007/BF00319298 · doi.org
[11] de Valk V., One–dependent processes: two–block–factors and non–two–block–factors, CWI Tract 85, Amsterdam, 1994. CMP 94:10 · Zbl 0834.60036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.