×

zbMATH — the first resource for mathematics

A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. (English) Zbl 0844.76048
Summary: To avoid the local oscillations that still remain using the streamline-upwind/Petrov-Galerkin formulation for the scalar convection-diffusion equation, the introduction of a nonlinear crosswind dissipation is proposed. It is shown that the method is less overdiffusive than other discontinuity-capturing techniques and has better numerical behavior. The design of the crosswind diffusion is based on the study of the discrete maximum principle for some simple cases.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hughes, T.J.R; Mallet, M; Mizukami, A, A new finite element formulation for computational fluid dynamics: II. beyond SUPG, comput, Methods appl. mech. engrg., 54, 341-355, (1986) · Zbl 0622.76074
[2] Johnson, C; Nävert, U; Pitkäranta, J, Finite element methods for linear hyperbolic equations, comput, Methods appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[3] Nävert, U, A finite element method for convection-diffusion problems, ()
[4] LeVeque, R.J, Numerical methods for conservation laws, (1990), Birkhäuser Boston · Zbl 0682.76053
[5] Hirsch, C, ()
[6] Oran, E.S; Boris, J.P, Numerical simulation of reactive flow, (1987), Elsevier Amsterdam · Zbl 0762.76098
[7] Ikeda, T, Maximum principle in finite element models for convection-diffusion phenomena, (1983), North-Holland/Kinokuniya Amsterdam · Zbl 0508.65049
[8] Codina, R; Oñate, E; Cervera, M, The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements, Comput. methods appl. mech. engrg., 94, 239-262, (1992) · Zbl 0748.76082
[9] Codina, R, Stability analysis of the forward Euler scheme for the convection-diffusion equation using the SUPG formulation in space, Internat. J. numer. methods engrg., 36, 1445-1464, (1993) · Zbl 0771.76035
[10] Mizukami, A; Hughes, T.J.R, A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle, Comput. methods appl. mech. engrg., 50, 181-193, (1985) · Zbl 0553.76075
[11] Rice, J.G; Schnipke, R.J, A monotone streamline upwind finite element method for convection-dominated flows, Comput. methods appl. mech. engrg., 48, 313-327, (1985) · Zbl 0553.76073
[12] Davis, S.F, A rotationally biased upwind difference scheme for the Euler equations, J. comput. phys., 39, 164-178, (1981)
[13] Hughes, T.J.R; Mallet, M, A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 58, 329-336, (1986) · Zbl 0587.76120
[14] Johnson, C; Szepessy, A, On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. comput., 49, 427-444, (1987) · Zbl 0634.65075
[15] Johnson, C; Szepessy, A; Hansbo, P, On the convergence of shock-capturing streamline finite element methods for hyperbolic conservation laws, () · Zbl 0685.65086
[16] Hughes, T.J.R; Franca, L.P; Hulbert, G.M, A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[17] Tezduyar, T.E; Park, Y.J, Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput. methods appl. mech. engrg., 59, 307-325, (1986) · Zbl 0593.76096
[18] Dutra do Carmo, E.G; Galeão, A.C, Feedback Petrov-Galerkin methods for convection-dominated problems, Comput. methods appl. mech. engrg., 88, 1-16, (1991) · Zbl 0753.76093
[19] Galeão, A.C; Dutra do Carmo, E.G, A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems, Comput. methods appl. mech. engrg., 68, 83-95, (1988) · Zbl 0626.76091
[20] Shakib, F, Finite element analysis of the compressible Euler and Navier-Stokes equations, ()
[21] Johnson, C, A new approach to algorithms for convection problems which are based on exact transport + projection, Comput. methods appl. mech. engrg., 100, 45-62, (1992) · Zbl 0825.76413
[22] Courant, R; Hilbert, D, ()
[23] Ciarlet, P.G; Raviart, P.-A, Maximum principle and uniform convergence for the finite element method, Comput. methods appl. mech. engrg., 2, 17-31, (1973) · Zbl 0251.65069
[24] Wahlbin, L.B, Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical analysis, RAIRO anal. numer., 12, 173-262, (1978) · Zbl 0382.65057
[25] Nitsche, J.A, ()
[26] Kikuchi, F, Discrete maximum principle and artificial viscosity in finite element approximations of convective diffusion equations, ISAS report no. 550, Vol. 42, No. 5, (1977), Tokyo
[27] Christie, I; Griffiths, D.F; Mitchell, A.R; Zienkiewicz, O.C, Finite element methods for second order differential equations with significant first derivatives, Internat. J. numer. methods engrg., 10, 1389-1396, (1976) · Zbl 0342.65065
[28] Ciarlet, P.G, The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[29] Johnson, C; Schatz, A.H; Wahlbin, L.B, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. comp., 49, 25-38, (1987) · Zbl 0629.65111
[30] Niijima, K, Pointwise error estimates for a streamline-diffusion finite element scheme, Numer. math., 56, 707-719, (1990) · Zbl 0691.65077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.