×

ALE finite element computations of fluid-structure interaction problems. (English) Zbl 0845.76049

Summary: A computational method is developed in order to analyze a class of fluid-structure interaction problems, where the viscous incompressible fluid and a rigid body-spring system interact nonlinearly with each other. In order to incorporate the effect of the moving surface of the rigid body as well as the free surface motion, the arbitrary Lagrangian-Eulerian (ALE) formulation is employed as the basis of the finite element spatial discretization. The method is applied to the vortex-excited oscillations of a circular cylinder, as well as to the interaction of a structure and a device for suppressing the structural vibration.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Blevins, R.D., Flow-induced vibration, (1990), Van Nostrand Reinhold New York
[2] Fujino, Y.; Sun, L.; Pacheco, B.M.; Chaiseri, P., Tuned liquid damper (TLD) for suppressing horizontal motion of structures, J. engrg. mech., 118, 2017-2030, (1992)
[3] Hirt, C.W.; Amsden, A.A.; Cook, H.K., An arbitrary Lagrangian Eulerian computing method for all flow speeds, J. comput. phys., 14, 227-253, (1974) · Zbl 0292.76018
[4] Hughes, T.J.R.; Liu, W.K.; Zimmerman, T.K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1981) · Zbl 0482.76039
[5] Belytschko, T.; Flanagan, D.P.; Kennedy, J.M., Finite element methods with user-controlled meshes for fluid-structure interaction, Comput. methods appl. mech. engrg., 33, 669-688, (1982) · Zbl 0492.73089
[6] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. methods appl. mech. engrg., 33, 689-723, (1982) · Zbl 0508.73063
[7] Liu, W.K.; Chang, H.; Chen, J.S.; Belytschko, T., Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua, Comput. methods appl. mech. engrg., 68, 259-310, (1988) · Zbl 0626.73076
[8] Huerta, A.; Liu, W.K., Viscous flow with large free surface motion, Comput. methods appl. mech. engrg., 69, 277-324, (1988) · Zbl 0655.76032
[9] Chen, J.S.; Liu, W.K.; Belytschko, T., Arbitrary Lagrangian-Eulerian methods for materials with memory and friction, Recent dev. comput. fluid dynam. AMD, 95, 41-61, (1989)
[10] Ramaswamy, B.; Kawahara, M., Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow, Internat. J. numer. methods fluids, 7, 1053-1075, (1987) · Zbl 0634.76033
[11] Huerta, A.; Liu, W.K., Viscous flow structure interaction, J. pressure vessel technol., 110, 15-21, (1988)
[12] Nomura, T.; Hughes, T.J.R., An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Comput. methods appl. mech. engrg., 95, 115-138, (1992) · Zbl 0756.76047
[13] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[14] Hughes, T.J.R., The finite element method, (1987), Prentice Hall Englewood Cliffs, NJ
[15] Mittal, S.; Tezduyar, T.E., A finite element study of incompressible flows past oscillating cylinders and aerofoils, Internal. J. numer. methods fluids, 15, 1073-1118, (1992)
[16] Koopman, G.H., The vortex wakes of vibrating cylinders at low Reynolds numbers, J. fluid mech., 28, 501-512, (1967)
[17] Anagnostopoulos, P.; Bearman, P.W., Response characteristics of vortex-excited cylinder at low Reynolds numbers, J. fluids struct., 6, 39-50, (1992)
[18] Ferguson, N.; Parkinson, G.V., Surface and wake flow phenomena of the vortex-excited oscillation of a circular cylinder, Trans. ASME J. engrg. industry, 831-838, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.