×

Computational construction of \(W\)-graphs of Hecke algebras \(H(q,n)\) for \(n\) up to \(15\). (English) Zbl 0846.20016

The author constructs, using a computer, all \(W\)-graphs corresponding to irreducible representations of Hecke algebras \(H(q,n)\) of type \(A_{n-1}\) for \(n\) up to 15 using a modification of a method proposed by A. Lascoux and M.-P. Schützenberger [Astérisque 87-88, 249-266 (1981; Zbl 0504.20007)].

MSC:

20C30 Representations of finite symmetric groups
20C40 Computational methods (representations of groups) (MSC2010)
20C20 Modular representations and characters

Citations:

Zbl 0504.20007
PDF BibTeX XML Cite
Full Text: DOI EuDML EMIS

References:

[1] Freyd P., Bull. Amer. Math. Soc. 12 pp 239– (1985) · Zbl 0572.57002
[2] Gyoja A., J. Alg. 86 pp 422– (1984) · Zbl 0537.20020
[3] Gyoja A., ”Topological invariants of links and representations of Hecke algebras’ (1986)
[4] Gyoja A., ”Topological invariants of links and representations of Hecke algebras II’ (1987)
[5] Hoefsmit P., Ph.D. thesis, in: ”Representations of Hecke algebras of finite group with BN pairs of classical type’ (1974)
[6] Jones V. F. R., Bull. Amer. Math. Soc. 12 pp 103– (1985) · Zbl 0564.57006
[7] Jones V. F. R., Annals of Math. 126 pp 335– (1987) · Zbl 0631.57005
[8] Kazdan D., Invent. Math. 53 pp 165– (1979) · Zbl 0499.20035
[9] Lascoux A., Tableaux de Young et foncteurs de Schur en algèbre et geom.étrie, Torun pp 249– (1981)
[10] Murakami J., Osaka J. Math. 26 (1989)
[11] Naruse H., ”On a relation between Specht module and left cell module of Hecke algebra of type n–1 (1994)
[12] Ochiai M., Proc. Japan Acad. (ser. A) 70 pp 267– (1994) · Zbl 0849.57008
[13] Wenzl H., Thesis, in: ”Representations of Hecke algebras and subfactors’ (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.