zbMATH — the first resource for mathematics

Fixed-point index for compositions of set-valued maps with proximally \(\infty\)-connected values on arbitrary ANR’s. (English) Zbl 0846.55001
This note presents an integer-valued fixed-point index theory for the class of compositions of maps from the class \(J\) defined on arbitrary ANR’s satisfying all axioms. The class \(J\) is contained in the class of compositions of acyclic maps. However, the authors leave open the problem if every acyclic map on an ANR belongs to the class \(J\). Following the introduction which describes earlier attempts to define fixed-point index theory for multivalued maps, the paper is divided into four sections. The first is preparatory, the second recalls Kryszewski’s definition of an index on compact ANR’s and proves the commutativity, mod \(p\) and multiplicativity of this index, the third is devoted to the construction and study of a fixed-point index of maps on open subsets of normed spaces, and the fourth gives the main results concerning a fixed-point index theory on arbitrary ANR’s. They conclude with a discussion on the normalization axiom and the relation of their index with the notion of essential maps (in the sense of Górniewicz, Granas, and the second author).
Reviewer: Z.Čerin (Zagreb)

55M20 Fixed points and coincidences in algebraic topology
54C60 Set-valued maps in general topology
Full Text: DOI
[1] Anichini, G., Conti, G., and Zecca, P.: Approximation of nonconvex set-valued mappings,Boll. Un. Mat. Ital. series VI 1 (1985), 145-153. · Zbl 0591.54013
[2] Anichini, G., Conti, G., and Zecca, P.: Approximation and selection for non-convex multifunctions in infinite dimensional spaces,Boll. Un. Mat. Ital. (7) 4-B (1990), 411-422. · Zbl 0717.47021
[3] Armentrout, S. and Price, T. M.: Decompositions into compact sets withUV properties,Trans. Amer. Math. Soc. 141 (1969), 433-442. · Zbl 0183.27902
[4] Bielawski, R.: The fixed point index for acyclic maps on ENR’s,Bull. Polish Acad. Sci. Math. 35 (1987), 487-499. · Zbl 0652.55003
[5] Borsuk, K.:Theory of Shape, PWN, Warsaw, 1975. · Zbl 0317.55006
[6] Brown, R.:The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, Illinois, London, 1971. · Zbl 0216.19601
[7] Cellina, A. and Lasota, A.: A new approach to the definition of topological degree of multi-valued mappings,Atti. Accad. Naz. Lincei 6 (1970), 434-440. · Zbl 0194.44801
[8] Dold, A.: Fixed point index and fixed point theorem for Euclidean neighborhood retracts,Topology 4 (1965), 1-8. · Zbl 0135.23101
[9] Dugundji, J.: Modified Vietoris theorems for homotopy,Fund. Math. 66 (1970), 223-235. · Zbl 0196.26801
[10] Fournier, G. and Violette, D.: A fixed point index for compositions of acyclic maps in Banach spaces, Preprint. · Zbl 1100.47518
[11] Girolo, J.: Approximating compact sets in normed spaces,Pacific J. Math. 98 (1982), 81-89. · Zbl 0439.46007
[12] Geba, K., Granas, A., Kaczy?ski, T., and Krawcewicz, W.: Homotopie et équations nonlinéar dans les espaces de Banach,C. R. Acad. Sci. Paris série I 300 (1985), 303-306. · Zbl 0585.47049
[13] Górniewicz, L.: Homological methods in fixed point theory of multivalued mappings,Diss. Math. 126 (1976), 1-71.
[14] Górniewicz, L. and Lassonde, M.: On approximable multi-valued mappings, to appear inTopology Appl.
[15] Górniewicz, L. and Granas, A.: Some general theorems in coincidence theory I,J. Math. Pures Appl. 60 (1981), 361-373. · Zbl 0482.55002
[16] Górniewicz, L., Granas, A., and Kryszewski, W.: Sur le méthode de l’homotopie dans la théorie de points fixes pour les applications multivoques, Partie I: Transversalité topologique,C. R. Acad. Sci. Paris 307 (1988), 489-492. · Zbl 0665.54030
[17] Górniewicz, L., Granas, A., and Kryszewski, W.: Partie II: L’indice dans les ANR-s compactes,ibid. 308 (1989), 449-452. · Zbl 0678.54033
[18] Górniewicz, G., Granas, A., and Kryszewski, W.: On the homotopy method in the fixed point index theory of multivalued mappings of compact ANR’s,J. Math. Anal. Appl. 161 (1991), 457-473. · Zbl 0757.54019
[19] Górniewicz, L., Granas, A., and Kryszewski, W.: Remarks on the degree for compositions ofJ-mappings, Preprint University of Nicholaus Copernicus, Torun, Poland (1988). · Zbl 0665.54030
[20] Granas, A.: Sur la notion du degré topologique pour une certaine classe de transformations multivalentes dans espaces de Banach,Bull. Polish Acad. Sci. Math. 7 (1959), 271-275. · Zbl 0087.32303
[21] Granas, A.: The Leray-Schauder index and the fixed point theory for arbitrary ANRs,Bull. Soc. Math. France 100 (1972), 209-228. · Zbl 0236.55004
[22] Hyman, D. M.: On decreasing sequences of compact absolute retracts,Fund. Math. 64 (1969), 91-97. · Zbl 0174.25804
[23] Kryszewski, W.: Homotopy invariants for set-valued maps: homotopy-approximation approach,Proc. Fixed Point Theory Conference, Marseille 1989, Longman Research Notes, London, 1991. · Zbl 0756.47036
[24] Kryszewski, W.: Topological and approximation methods of degree theory of set-valued maps, to appear inDiss. Math. · Zbl 0832.55004
[25] Kryszewski, W. and Miklaszewski, D.: The Nielsen number of set-valued maps: an approximation approach,SERDICA Bulg. Math. Publ. 15 (1989), 336-344. · Zbl 0712.55003
[26] Mas-Collel, A.: A note on a theorem of F. Browder,Math. Progr. 6 (1974), 229-233. · Zbl 0285.90068
[27] Siegberg, H. W. and Skordev, G.: Fixed point index and chain approximations,Pacific J. Math. 102 (1982), 455-486. · Zbl 0458.55001
[28] Skordev, G.: Fixed point index for open sets in euclidean spaces,Fund. Math. 121 (1984), 41-58. · Zbl 0561.55001
[29] Skordev, G.: Fixed point index on ANR’s, Rep. 46, Forschungsschwerpunkt Dynamische Systeme, Universität Bremen, 1981.
[30] Skordev, G.: The multiplicativity property of the fixed point index for multivalued maps,SERDI-CA Bulg. Math. Publ. 15 (1989), 160-170. · Zbl 0688.55004
[31] Spanier, E.:Algebraic Topology, McGraw-Hill, New York, 1966. · Zbl 0145.43303
[32] Steinlein, H.: Über die verallgemeinerten Fixpunktindizes von Iterierten verdichtender Abbildungen,Manuscripta Math. 8 (1973), 251-266. · Zbl 0252.47065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.