×

zbMATH — the first resource for mathematics

Interval methods for global optimization. (English) Zbl 0846.65029
Summary: This paper contains a brief survey of the fundamental ideas that underlie interval methods for global optimization. Some recent work is also surveyed and possible future developments are suggested.

MSC:
65K05 Numerical mathematical programming methods
65G30 Interval and finite arithmetic
90C30 Nonlinear programming
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis
Software:
BRENT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ()
[2] Alefeld, G.; Herzberger, J., Introduction to interval computations, (1983), Academic Press London
[3] Neumaier, A., Interval methods for systems of equations, (1990), Cambridge University Press Cambridge · Zbl 0706.15009
[4] Ratschek, H., Some recent aspects of interval algorithms for global optimization, () · Zbl 0653.65047
[5] Hansen, E.R., Global optimization using interval analysis, (1992), Marcel Dekker New York · Zbl 0756.65035
[6] Fujii, Y.; Ichida, K.; Ozasa, M., Maximization of multivariable functions using interval analysis, () · Zbl 0598.65046
[7] Hansen, E.R., Global optimization using interval analysis: the one-dimensional case, Jota, 29, 331-344, (1979) · Zbl 0388.65023
[8] Hansen, E.R., Global optimization using interval analysis: the multidimensional case, Numer. math., 34, 247-270, (1980) · Zbl 0442.65052
[9] Hansen, E.R.; Sengupta, S., Global constrained optimization using interval analysis, () · Zbl 0537.65052
[10] Ichida, K.; Fujii, Y., An interval arithmetic method for global optimization, Computing, 23, 85-97, (1979) · Zbl 0403.65028
[11] Ichida, K.; Fujii, Y., Multicriterion optimization using interval analysis, Computing, 44, 47-57, (1990) · Zbl 0699.65053
[12] Jansson, C., A global optimization method using interval arithmetic, () · Zbl 0838.65069
[13] Jansson, C.; Knüppel, O., An interval analytic method for global optimization problems, (1992), ZAMM · Zbl 0802.65078
[14] Jansson, C.; Knüppel, O., A global minimization method: the multidimensional case, (January 1992), Technical University of Hamburg Harburg Bericht, 92.1
[15] Kearfott, R.B., An interval branch and bound algorithm for bound constrained optimization problems, J. global opt., 2, 259-280, (1992) · Zbl 0760.90085
[16] Ratschek, H.; Rokne, J., New computer methods for global optimization, (1988), Ellis Horwood Chichester, U.K · Zbl 0648.65049
[17] Wolfe, M.A., An interval algorithm for constrained global optimization, Computational appl. math., 50, 1-8, (1994) · Zbl 0809.65064
[18] Wolfe, M.A., On global optimization in R using interval arithmetic, Optimization, methods and software, 3, 61-76, (1994)
[19] Wolfe, M.A.; Zhang, L.S., An interval algorithm for nondifferentiable global optimization, Appl. math. computation, 63, 101-122, (1994) · Zbl 0809.65063
[20] Krawczyk, R.; Nickel, K., Die zentrische form in der intervallarithmetik, ihre quadratische konvergenz und ihre inclusionsisotonie, Computing, 28, 117-137, (1982) · Zbl 0466.65026
[21] Baumann, E., Optimal centered forms, Bit, 28, 80-87, (1988) · Zbl 0641.65043
[22] Baumann, E., Globale optimierung stetig differenzierbarer funktionen einer variablen, Freiburger intervall-berichte 86/6, (1986)
[23] Wolfe, M.A., Interval methods for linear systems, (), Il Ciocco, Italy · Zbl 0846.65029
[24] Hansen, E.R., Bounding the solution of interval linear equations, SIAM J. numer. anal., 29, 1493-1503, (1992) · Zbl 0756.65035
[25] Alefeld, G., On the convergence of some interval-arithmetic modifications of Newton’s method, SIAM J. numer. anal., 21, 363-372, (1984) · Zbl 0536.65026
[26] Bazaraa, M.S.; Shetty, C.M., Foundations of optimization, () · Zbl 0334.90049
[27] Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M., Nonlinear programming, theory and algorithms, (1993), John Wiley & Sons New York · Zbl 0774.90075
[28] Shen, Z.; Wolfe, M.A., Slope tests for Newton type methods, Appl. math. computation, 52, 403-416, (1992) · Zbl 0765.65054
[29] Shen, Z.; Wolfe, M.A., On certain computable tests and componentwise error bounds, Computing, 50, 353-368, (1993) · Zbl 0784.65050
[30] Moore, R.E.; Hansen, R.E.; Leclerc, A., Rigorous methods for global optimization, (), 321-342
[31] Metcalf, M.; Reid, J., Fortran 90 explained, (1992), Oxford University Press Oxford · Zbl 0846.68017
[32] Überhaber, C.; Meditz, P., Software-entwicklung in Fortran 90, (1994), Springer-Verlag Wien, New York
[33] Ellis, T.M.R.; Philips, I.R.; Lahey, T.M., Fortran 90 programming, (1994), Addison Wesley Wokingham, U.K
[34] Mákelá, M.M.; Neittaanmáki, P., Nonsmooth optimization, analysis and algorithms with applications to optimal control, (1992), World Scientific Publishing Co · Zbl 0757.49017
[35] Kiwiel, K.C., Methods of descent for nondifferentiable optimization, () · Zbl 0602.90122
[36] Abaffy, J.; Spedicato, E., ABS projection algorithms, (1989), Ellis Horwood Chichester, U.K · Zbl 0691.65022
[37] Steighaug, T., The conjugate gradient method and trust regions in large scale optimization, SIAM J. numer. anal., 20, 626-637, (1983)
[38] Dixon, L.C.W.; Price, R.C., Numerical experience with the truncated Newton method, () · Zbl 0621.90080
[39] Dixon, L.C.W.; Maany, Z.A., The performance of the truncated Newton, conjugate gradient algorithm in Fortran and ada, () · Zbl 0664.93057
[40] Brent, R.P., Algorithms for minimization without derivatives, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0245.65032
[41] Caprani, O.; Godthaab, B.; Madsen, K., Use of real-valued local minimum in parallel interval global optimization, Interval computations, 2, 71-81, (1993) · Zbl 0829.65081
[42] Jansson, C., On self-validating methods for optimization problems, () · Zbl 0817.65044
[43] M. A. Wolfe, An Interval Algorithm for Bound Constrained Global Optimization, Optimization Methods and Software (To appear). · Zbl 0809.65064
[44] Kreinovich, V.; Bernat, A., Parallel algorithms for interval computations: an introduction, Interval computations, 3, 9-62, (1995) · Zbl 0835.65067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.