zbMATH — the first resource for mathematics

On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells. (English) Zbl 0848.73060
The authors present a simple nonlinear stress resultant four node shell finite element. The underlying shell theory is developed from three-dimensional continuum theory via standard assumptions on the displacement field. A model for thin shell is obtained by approximating terms describing the shell geometry. The rotation of the shell director is parameterized by two Euler angles, although other approaches can also be easily accomodated. A procedure is provided to extend the presented approach by including the through-thickness variable material properties. These may include a general nonlinear elastic material with varying degree of orthotropy, which is typical for fibre reinforced composites. Thus a simple and efficient model suitable for analysis of multilayered composite shells is obtained. Shell kinematics is consistently linearized, leading to the Newton-Raphson numerical procedure, which preserves quadratic rate of asymptotic convergence. A range of linear and nonlinear tests is provided and compared with available solutions to illustrate the approach.

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74E30 Composite and mixture properties
Full Text: DOI
[1] Andelfinger, U.; Ramm, E. 1993: EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Meth. Engng. 36: 1311–1337 · Zbl 0772.73071 · doi:10.1002/nme.1620360805
[2] Basar, Y.; Ding, Y. 1990: Theory and finite-element formulation for shell structures undergoing finite rotations, In: Voyiadjis, G. Z.; Karamanlidis, D. (eds.): Advances in the Theory of Plates and Shells. Elsevier Science Publ.
[3] Bathe, K.-J.; Dvorkin, E. N. 1985: A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed formulation. Int. J. Numer. Meth. Engng. 21: 367–383 · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[4] Brank, B.; Perić, D.; Damjanić, F. B. 1993: A nonlinear four node shell element with explicit integration and elementary rotations. In: Kussmaul, K. F. (ed.): Proc. Trans. of the 12th Int. Conf. SMIRT, Vol. B, 153–158, Elsevier Science Publ.
[5] Büchter, N.; Ramm, E. 1992: Shell theory versus degeneration-a comparison in large rotation finite element analysis. Int. J. Numer. Meth. Engng. 34: 39–59 · Zbl 0760.73041 · doi:10.1002/nme.1620340105
[6] Crisfield, M. A. 1991: Non-linear Finite Element Analysis of Solids and Structures, Vol. 1 Chichester: John Wiley · Zbl 0809.73005
[7] Dvorkin, E. N.; Bathe, K.-J. 1984: A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Comput. 1: 77–88 · doi:10.1108/eb023562
[8] Figueiras, J. A.; Owen, D. R. J. 1984: Analysis of elasto-plastic and geometrically nonlinear anisotropic plates and shells. In: Hinton, E.; Owen, D. R. J. (eds.): Finite Element Software for Plates and Shells, 235–326, Swansea: Pineridge Press
[9] Gebhardt, H.; Schweizerhof, K. 1993: Interpolation of curved shell geometries by low order finite elements-errors and modifications. Int. J. Num. Meth. Engng. 36: 287–302 · Zbl 0769.73077 · doi:10.1002/nme.1620360208
[10] Green, A. E.; Zerna, W. 1968: Theoretical Elasticity. 2nd Ed. Oxford University Press · Zbl 0155.51801
[11] Laschet, G.; Jeusette, J.-P. 1990: Postbuckling finite element analysis of composite panels. Compos. Struct. 14: 35–48 · doi:10.1016/0263-8223(90)90057-L
[12] Lindberg, G. M.; Olson, M. D.; Cowper, G. R. 1969: New developments in the finite element analysis of shells. National Research Council of Canada, Quarterly Bulletin of the Division of Mechanical Engineering and National Aeronautical Establishment, 4: 1–38
[13] Matthews, F. L.; Rawlings, R. D. 1994: Composite Materials: Engineering and Science. London: Chapman and Hall
[14] Naghdi, P. M. 1972: The theory of shells. In: Flüge, S. (ed.): Handbuch der Physik, Vol. VI/2, Springer-Verlag · Zbl 0283.73034
[15] Parisch, H. 1991: An investigation of a finite rotation four node assumed strain element. Int. J. Num. Meth. Engng. 31: 127–150 · Zbl 0825.73783 · doi:10.1002/nme.1620310108
[16] Perić, D.; Owen, D. R. J. 1991: The Morley thin shell finite element for large deformations problems: simplicity versus sophistication. In: Bićanić, N. (ed.): Proc. Int. Conf. on Nonlinear Engineering Computations, 121–142, Swansea: Pineridge Press
[17] Pian, T. H. H.; Sumihara, K. 1984: Rational approach for assumed stress finite elements. Int. J. Num. Meth. Engng. 20: 1685–1695 · Zbl 0544.73095 · doi:10.1002/nme.1620200911
[18] Ramm, E.; Matzenmiller, A. 1986: Large deformation shell analysis based on the degeneration concept. In: Hughes, T. J. R.; Hinton, E. (eds.): Finite Element Methods for Plate and Shell Structures, 365–393, Swansea: Pineridge Press
[19] Saigal, S.; Kapania, R.; Yang, Y. 1986: Geometrically nonlinear finite element analysis of imperfect laminated shells. J. Composite Mater. 20: 197–214 · doi:10.1177/002199838602000206
[20] Sansour, C.; Bufler, H. 1992: An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation. Int. J. Num. Meth. Engng. 34: 73–115 · Zbl 0760.73043 · doi:10.1002/nme.1620340107
[21] Simo, J. C.; Fox, D. D. 1989a: On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Engng. 72: 267–304 · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[22] Simo, J. C.; Fox, D. D.; Rifai, M. S. 1989b: On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects. Comp. Meth. Appl. Mech. Engng. 73: 53–92 · Zbl 0724.73138 · doi:10.1016/0045-7825(89)90098-4
[23] Simo, J. C.; Fox, D. D.; Rifai, M. S. 1990: On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comp. Meth. Appl. Mech. Engng. 79: 21–70 · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[24] Simo, J. C.; Hughes, T. J. R. 1986: On the variational foundations of assumed strain methods. J. Appl. Mech. 53: 51–54 · Zbl 0592.73019 · doi:10.1115/1.3171737
[25] Stander, N.; Matzenmiller, A.; Ramm, E. 1989: An assessment of assumed strain methods in finite rotation shell analysis. Eng. Comput. 6: 57–66
[26] Stanley, G. 1985: Continuum Based Shell Elements. Ph.D. Dissertation, Applied Mechanics Division, Stanford: Stanford University
[27] Timoshenko, S.; Woinowsky-Krieger, S. 1959: Theory of Plates and Shells, 2nd edition, New York: McGraw-Hill · Zbl 0114.40801
[28] Wriggers, P.; Gruttmann, F. 1993: Thin shells with finite rotations formulated in Biot stresses: Theory and finite element formulation. Int. J. Numer. Meth. Engng. 36: 2049–2071 · Zbl 0779.73074 · doi:10.1002/nme.1620361207
[29] Wriggers, P.; Simo, J. C. 1990: A general procedure for the direct computation of turning and bifurcation points. Int. J. Numer. Meth. Engng. 30: 155–176 · Zbl 0728.73069 · doi:10.1002/nme.1620300110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.