×

Implementation of implicit finite element methods for incompressible flows on the CM-5. (English) Zbl 0848.76037

A parallel implementation of an implicit finite element formulation for incompressible fluids on a distributed-memory massively parallel computer is presented. The dominant issue that distinguishes the implementation of finite element problems on distributed-memory computers from that on traditional shared-memory scalar or vector computers is the distribution of data (and hence workload) to the processors and the non-uniform memory hierarchy associated with the processors, particularly the non-uniform costs associated with on-processor and off-processor memory references.
The discussion relies primarily on abstract features of the hardware and software environment and should be applicable, in principle, to a variety of distributed-memory system. The actual implementation is carried out on a Connection Machine CM-5 system with high performance communication functions.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Malone, J. G., Automated mesh decomposition and concurrent finite element analysis for hypercube multiprocessor computers, Comput. Methods Appl. Mech. Engrg., 70, 27-58 (1988) · Zbl 0634.73062
[2] Farhat, C.; Wilson, E., A new finite element concurrent computer program architecture, Internat. J. Numer. Methods Engrg., 24, 1771-1792 (1987) · Zbl 0625.73080
[3] Lyzenga, G. A.; Raefsky, A.; Hager, B. H., Finite elements and the method of conjugate gradients on concurrent processors, (Caltech/JPL Report C3P-119 (1984), California Institute of Technology: California Institute of Technology Pasadena, CA)
[4] Mathur, K. K.; Johnsson, S. L., The finite element method on a data parallel computing system, Internat. J. High-Speed Comput., 1, 29-44 (1989) · Zbl 0725.73088
[5] Belytschko, T.; Plaskacz, E. J.; Kennedy, J. M.; Greenwell, D. L., Finite element analysis on the Connection Machine, Comput. Methods Appl. Mech. Engrg., 81, 229-254 (1990) · Zbl 0728.73068
[6] Shapiro, R. A., Implementation of an Euler/Navier-Stokes finite element algorithm on the Connection Machine, (AIAA 29th Aerospace Sciences Meeting. AIAA 29th Aerospace Sciences Meeting, AIAA-91-0438 (1991))
[7] Farhat, C.; Sobh, N.; Park, K. C., Transient finite element computations on 65536 processors: The Connection Machine, Internat. J. Numer. Methods Engrg., 30, 27-55 (1990)
[8] Johan, Z.; Hughes, T. J.R.; Mathur, K. K.; Johnsson, S. L., A data parallel finite element method for computational fluid dynamics on the Connection Machine system, Comput. Methods Appl. Mech. Engrg., 99, 113-134 (1992) · Zbl 0825.76422
[9] Behr, M.; Johnson, A.; Kennedy, J.; Mittal, S.; Tezduyar, T., Computation of incompressible flows with implicit finite element implementations of the Connection Machine, Comput. Methods Appl. Mech. Engrg., 108, 99-118 (1993) · Zbl 0784.76046
[10] Johan, Z.; Mathur, K. K.; Johnsson, S. L.; Hughes, T. J.R., An efficient communication strategy for finite element methods on the Connection Machine CM-5 system, Comput. Methods Appl. Mech. Engrg., 113, 363-387 (1994) · Zbl 0846.76046
[11] Pothen, A.; Simon, H. D.; Liou, K.-P., Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Analysis Appl., 11, 430-452 (1990) · Zbl 0711.65034
[12] Simon, H. D., Partitioning of unstructured problems for parallel processing, Comput. Syst. Engrg., 2, 135-148 (1991)
[13] Koelbel, C. H.; Loveman, D. B.; Schreiber, R. S.; Steele, G. L.; Zosel, M. E., (The High Performance Fortran Handbook (1994), MIT Press: MIT Press Cambridge, MA), ISBN 0-262-61094-9
[14] Fortran, C. M., (Reference Manual (1994), Thinking Machines Corporation: Thinking Machines Corporation Cambridge, MA)
[15] Tezduyar, T. E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces — the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary tests, Comput. Methods Appl. Mech. Engrg., 94, 339-351 (1992) · Zbl 0745.76044
[16] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interface — the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods Appl. Mech. Engrg., 94, 353-371 (1992) · Zbl 0745.76045
[17] Johnsson, S. L.; Mathur, K. K., Experience with the conjugate gradient method for stress analysis on a data parallel computer, Internat. J. Numer. Methods Engrg., 27, 523-546 (1989)
[18] Johan, Z., Data parallel finite element techniques for large-scale computational fluid dynamics, (Ph.D. Thesis (1992), Department of Mechanical Engineering, Stanford University)
[19] Mathur, K. K.; Johnsson, S. L., Communication primitives for unstructured finite element simulations on data parallel architectures, Comput. Syst. Engrg., 3, 63-71 (1992)
[20] Shephard, M. S.; Georges, M. K., Automatic three-dimensional mesh generation by the finite octree technique, Internat. J. Numer. Methods Engrg., 32, 709-749 (1991) · Zbl 0755.65116
[21] Tezduyar, T. E.; Mittal, S.; Ray, S. E.; Shih, R., Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. Meth. Appl. Mech. Engrg., 95, 221-242 (1992) · Zbl 0756.76048
[22] Kato, C.; Ikegawa, M., Large eddy simulation of unsteady turbulent wake of a circular cylinder using the finite element method, (Celik, I.; Kobayashi, T.; Ghia, K. N.; Kurokawa, J., Advances in Numerical Simulation of Turbulent Flows, FED, Vol. 117 (1991), ASME: ASME New York), 49-56
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.