Fabre, Caroline; Lebeau, Gilles Unique continuation property for solutions of Stokes’ equations. (Prolongement unique des solutions de l’equation de Stokes.) (French) Zbl 0849.35098 Commun. Partial Differ. Equations 21, No. 3-4, 573-596 (1996). Summary: We prove a unique continuation property for solutions of Stokes equations with a non regular potential. For this, we state a Carleman’s inequality which concerns the Laplace operator. Cited in 2 ReviewsCited in 54 Documents MSC: 35Q30 Navier-Stokes equations 35B60 Continuation and prolongation of solutions to PDEs 76D07 Stokes and related (Oseen, etc.) flows 35R05 PDEs with low regular coefficients and/or low regular data Keywords:unique continuation property; Stokes equations; Carleman’s inequality PDF BibTeX XML Cite \textit{C. Fabre} and \textit{G. Lebeau}, Commun. Partial Differ. Equations 21, No. 3--4, 573--596 (1996; Zbl 0849.35098) Full Text: DOI References: [1] D. Robert. Autour de l’ approximation semi–classique. Progress in Math. n 68, Birkhauser, 1987. · Zbl 0621.35001 [2] E. Fernandez–Cara et J. Real. On a conjecture due to J.L. Lions. A paraitre dans Non Linear Analysis, Theory, Methods and Applications. [3] L. Hormander. Lznear Partial Dafferential Operators. T. 3, Springer–Verlag, 1985. [4] Lebeau et G., Comm. Patrt. Diff Eq. 20 pp 335– (1995) · Zbl 0819.35071 · doi:10.1080/03605309508821097 [5] X. Saint Raymond. Elementary introduction to the theory of pseudod–iffererentiel operators. Studies in advance math, 1991. [6] Saut et J.C., Journal Differential Equations, 66 (1) pp 118– (1987) · Zbl 0631.35044 · doi:10.1016/0022-0396(87)90043-X [7] Saut et J.C., Indiana Univ. Math. Journal 29 pp 427– (1980) · Zbl 0445.76023 · doi:10.1512/iumj.1980.29.29031 [8] C. Fabre. A pamitre. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.