zbMATH — the first resource for mathematics

Unique continuation property for solutions of Stokes’ equations. (Prolongement unique des solutions de l’equation de Stokes.) (French) Zbl 0849.35098
Summary: We prove a unique continuation property for solutions of Stokes equations with a non regular potential. For this, we state a Carleman’s inequality which concerns the Laplace operator.

35Q30 Navier-Stokes equations
35B60 Continuation and prolongation of solutions to PDEs
76D07 Stokes and related (Oseen, etc.) flows
35R05 PDEs with low regular coefficients and/or low regular data
Full Text: DOI
[1] D. Robert. Autour de l’ approximation semi–classique. Progress in Math. n 68, Birkhauser, 1987. · Zbl 0621.35001
[2] E. Fernandez–Cara et J. Real. On a conjecture due to J.L. Lions. A paraitre dans Non Linear Analysis, Theory, Methods and Applications.
[3] L. Hormander. Lznear Partial Dafferential Operators. T. 3, Springer–Verlag, 1985.
[4] Lebeau et G., Comm. Patrt. Diff Eq. 20 pp 335– (1995) · Zbl 0819.35071 · doi:10.1080/03605309508821097
[5] X. Saint Raymond. Elementary introduction to the theory of pseudod–iffererentiel operators. Studies in advance math, 1991.
[6] Saut et J.C., Journal Differential Equations, 66 (1) pp 118– (1987) · Zbl 0631.35044 · doi:10.1016/0022-0396(87)90043-X
[7] Saut et J.C., Indiana Univ. Math. Journal 29 pp 427– (1980) · Zbl 0445.76023 · doi:10.1512/iumj.1980.29.29031
[8] C. Fabre. A pamitre.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.