×

Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled FE/BE formulations. (English) Zbl 0849.65093

Theory and application for coupled finite element (FE) methods (for interior subdomains) and boundary element (BE) methods (for infinite exterior subdomains) for electric devices, using domain decomposition and conjugate gradient-type solvers for the linear system. Nonlinear problems are solved by a nested multilevel Newton iteration. Examples are presented for Parsytec Xplorer (8 proc.) and GC Power Plus (32 proc.).

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78A30 Electro- and magnetostatics
65H10 Numerical computation of solutions to systems of equations
65Y05 Parallel numerical computation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bramble, J. H., Pasciak, J. E.: A preconditioning technique for indefinite systems resulting from mixed approximation of elliptic problems. Math. Comput.50, 1–17 (1988). · Zbl 0643.65017
[2] Bramble, J. H., Pasciak, J. E., Schatz, A. H.: The construction of preconditioners for elliptic problems by substructuring I–IV. Math. Comput.47, 103–134 (1986);49, 1–16 (1987);51, 415–430 (1988);53, 1–24 (1989). · Zbl 0615.65112
[3] Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners. Math. Comput.55, 1–22 (1990). · Zbl 0703.65076
[4] Chan, T. F., Glowinski, R., Periaux, J., Widlund, O. B.: Domain decomposition methods for partial differential equations. Proc. of the 2nd International Symposium, Los Angeles, 1988. Philadelphia: SIAM 1989.
[5] Chan, T. F., Glowinski, R., Periaux, J., Widlund, O. B.: Domain decomposition methods for partial differential equations. Proc. of the 3rd International Symposium, Houston, 1989. Philadelphia: SIAM 1990. · Zbl 0675.00021
[6] Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Boundary elements IX, (Brebbia, C. A., Wendland, W. L., Kuhn, G., eds), pp. 411–420. Berlin Heidelberg New York Tokyo: Springer 1987.
[7] Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal.19, 613–626 (1988). · Zbl 0644.35037
[8] Costabel, M., Wendland, W. L.: Strong ellipticity of boundary integral operators. J. R. Angew. Math.372, 34–63 (1986). · Zbl 0628.35027
[9] Glowinski, R., Golub, G. H., Meurant, G. A., Periaux, J.: Domain decomposition methods for partial differential equations. Proc. of the 1st International Symposium, Paris, 1987. Philadelphia: SIAM 1988.
[10] Haase, G., Heise, B., Jung, M., Kuhn, M.: FEMOOBEM – a parallel solver for linear and nonlinear coupled FE/BE-equations. DFG-Schwerpunkt ”Randelementmethoden”, Report 94-16, University Stuttgart, 1994.
[11] Haase, G., Langer, U.: On the use of multigrid preconditioners in the domain decomposition method. In: Parallel Algorithms for PDEs (Hackbusch, W., ed.), pp. 101–110. Braunschweig: Vieweg 1990. · Zbl 0742.65084
[12] Haase, G., Langer, U.: The non-overlapping domain decomposition multiplicative Schwarz method. Int. J. Comput. Math.44, 223–242 (1992). · Zbl 0758.65024
[13] Haase, G., Langer, U., Meyer, A.: The approximate dirichlet domain decomposition method. Part I: An algebraic approach. Part II: Applications to 2nd-order elliptic boundary value problems. Computing47, 137–151; 153–167 (1991). · Zbl 0741.65091
[14] Haase, G., Langer, U., Meyer, A.: Domain decomposition preconditioners with inexact subdomain solvers. J. Num. Lin. Alg. Appl.1, 27–42 (1992).
[15] Haase, G., Langer, U., Meyer, A., Nepomnyaschikh, S. V.: Hierarchical extension operators and local multigrid methods in domain decomposition preconditioners. East-West J. Numer. Math.2, 173–193 (1994). · Zbl 0849.65089
[16] Hackbusch, W.: Multi-grid methods and applications. Computational mathematics, Vol. 4. Berlin Heidelberg New York: Springer 1985. · Zbl 0595.65106
[17] Hackbusch, W.: Integralgleichungen: Theorie und Numerik. Stuttgart: Teubner 1989. · Zbl 0681.65099
[18] Hackbusch, W.: Parallel algorithms for partial differential equations. Proc. of the 6th GAMM-Seminar, Kiel, 1990. Braunschweig: Vieweg 1991. · Zbl 0731.73088
[19] Haumer, A., Lindner, E. H.: On the optimal design of three-phase asynchronous motors. Institut für Mathematik, Report 485, Johannes Kepler University Linz, 1994. · Zbl 0925.90161
[20] Heise, B.: Multigrid-Newton methods for the calculation or electromagnetic fields. In: Third Multigrid Seminar, Biesenthal 1988 (Telschow, G., ed.), pp. 53–73. Karl-Weierstrass-Institute, Academy of Sciences, Berlin 1989. Report R-MATH-03/89.
[21] Heise, B.: Mehrgitter-Newton-Verfahren zur Berechnung nichtlinearer magnetischer Felder. Wissenschaftliche Schriftenreihe 4/1991, Technische Universität Chemnitz, 1991. · Zbl 0729.65099
[22] Heise, B.: Sensitivity analysis for nonlinear magnetic field simulation. In: Modelling uncertain data (Bandemer, H., ed.), pp. 40–45. Berlin: Akademie Verlag 1992. · Zbl 0790.65105
[23] Heise, B.: Nonlinear field calculations with multigrid-Newton methods. Imp. Comput. Sci. Eng.5, 75–110 (1993). · Zbl 0779.65079
[24] Heise, B.: Analysis of a fully discrete finite element method for a nonlinear magnetic field problem. SIAM J. Numer. Anal.31, 745–759 (1994). · Zbl 0804.65123
[25] Heise, B.: Nonlinear magnetic field simulation with FE/BE domain decomposition methods on MIMD parallel computers. DFG-Schwerpunkt ”Randelementmethoden”, Report 94-19, University Stuttgart, 1994.
[26] Heise, B.: Nonlinear simulation of electro-magnetic fields with domain decomposition methods on MIMD parallel computers. Proceedings of MODELLING 94, Prague, August 29–September 2, 1994. J. Comput, Appl. Math.63, 373–381 (1995). · Zbl 0861.65108
[27] Heise, B.: Nonlinear field simulation with FE domain decomposition methods on massively parallel computers. Surv. Math. Ind. (to appear). · Zbl 0873.65109
[28] Hsiao, G. C., Wendland, W.: Domain decomposition in boundary element methods. In: Proc. of IV Int. Symposium on Domain Decomposition Methods (Glowinski, R., Kuznetsov, Y. A., Meurant, G., Pérriaux, J., Widlund, O. B. eds.), pp. 41–49. Philadelphia: SIAM 1991.
[29] Kuhn, M.: A parallel solver for exterior problems based on a coupled FE/BE-model. DFG-Schwerpunkt ”Randelementmethoden”, Report 94-15, University Stuttgart, 1994.
[30] Langer, U.: Parallel iterative solution of symmetric coupled fe/be- equations via domain decomposition. DFG-Schwerpunkt ”Randelementmethoden”, Report 92-2, University Stuttgart, 1992. Preprint 217, TU Chemnitz, 1992.
[31] Langer, U.: Parallel iterative solution of symmetric coupled fe/be- equations via domain decomposition. Cont. Math.157, 335–344 (1994). · Zbl 0798.65110
[32] Rjasanow, S.: Vorkonditionierte iterative Auflösung von Randelementgleichungen für die Dirichlet-Aufgabe. Wissenschaftliche Schriftenreihe 7, Technische Universität Chemnitz, 1990. · Zbl 0712.65088
[33] Steinbach, O., Wendland, W. L.: Efficient preconditioners for boundary element methods and their use in domain decomposition methods. DFG-Schwerpunkt ”Randelementmethoden”, Report 95-19, University Stuttgart, 1995.
[34] Tong, C. H., Chan, T. F., Kuo, C. J.: A domain decomposition preconditioner based on a change to a multilevel nodal basis. SIAM J. Sci. Stat. Comput.12, 1486–1495 (1991). · Zbl 0744.65084
[35] Wendland, W.: On the coupling of finite elements and boundary elements. In: Discretization methods in structural mechanics (Kuhn, G., Mang, H., eds.), pp. 405–414.: Berlin, Heidelberg New York Tokyo: Springer 1990. Proc. IUTUM/IACM Symposium, Vienna, 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.