×

Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables. (English) Zbl 0850.62461


MSC:

62H25 Factor analysis and principal components; correspondence analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of ”Eckart-Young” decomposition.Psychometrika, 35, 283–319. · Zbl 0202.19101
[2] Clarkson, D. B., & Jennrich, R. I. (1988). Quartic rotation criteria and algorithms.Psychometrika, 53, 251–259. · Zbl 0718.62134
[3] Crawford, C. B., & Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal rotation.Psychometrika, 35, 321–332. · Zbl 0202.19102
[4] de Leeuw, J. (1973).Canonical analysis of categorical data. Unpublished doctoral dissertation, University of Leiden.
[5] de Leeuw, J., & Pruzansky, S. (1978). A new computational method to fit the weighted Euclidean distance model.Psychometrika, 43, 479–490. · Zbl 0401.62083
[6] de Leeuw, J., & van Rijckevorsel, J. L. A. (1980). HOMALS and PRINCALS, some generalizations of principal components analysis. In E. Diday et al. (Eds.),Data analysis and informatics II (pp. 231–242). Amsterdam: Elsevier Science Publishers.
[7] Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle [Simultaneous treatment of qualitative and quantitative variables in factor analysis].Cahiers de l’Analyse des Données, 4, 137–146.
[8] Ferguson, G. A. (1954). The concept of parsimony in factor analysis.Psychometrika, 19, 281–290. · Zbl 0058.13007
[9] Gifi, A. (1990).Nonlinear multivariate analysis. New York: Wiley. · Zbl 0697.62048
[10] Harman, H. H. (1976).Modern factor analysis (3rd ed.). Chicago: University of Chicago Press. · Zbl 0161.39805
[11] Hartigan, J. A. (1975).Clustering algorithms. New York: Wiley. · Zbl 0372.62040
[12] Jennrich, R. I. (1970). Orthogonal rotation algorithms.Psychometrika, 35, 229–235.
[13] Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.Psychometrika, 23, 187–200. · Zbl 0095.33603
[14] Kiers, H. A. L. (1988). Principal components analysis on a mixture of quantitative and qualitative data based on generalized correlation coefficients. In M. G. H. Jansen & W. H. van Schuur (Eds.),The many faces of multivariate analysis, Vol. I, Proceedings of the SMABS-88 Conference in Groningen (pp. 67–81). Groningen: Rion.
[15] Kiers, H. A. L. (1989a). A computational short-cut for INDSCAL with orthonormality constraints on positive semi-definite matrices of low rank.Computational Statistics Quarterly, 2, 119–135. · Zbl 0715.65120
[16] Kiers, H. A. L. (1989b). INDSCAL for the analysis of categorical data. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 155–167). Amsterdam: Elsevier Science Publishers.
[17] Kiers, H. A. L. (1989c).Three-way methods for the analysis of qualitative and quantitative two-way data. Leiden: DSWO Press.
[18] Kiers, H. A. L. (1990). Majorization as a tool for optimizing a class of matrix functions,Psychometrika, 55, 417–428. · Zbl 0733.62067
[19] Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University Press. · Zbl 0487.62001
[20] Nishisato, S., & Sheu, W.-J. (1980). Piecewise method of reciprocal averages for dual scaling of multiple-choice data.Psychometrika, 45, 467–478. · Zbl 0481.62049
[21] Saporta, G. (1976). Quelques applications des opérateurs d’Escoufier au traitement des variables qualitatives [Several Escoufier operators for the treatment of qualitative variables].Statistique et Analyse des Données, 1, 38–46.
[22] ten Berge, J. M. F. (1983). A generalization of Kristof’s theorem on the trace of certain matrix products.Psychometrika, 48, 519–523. · Zbl 0536.62093
[23] ten Berge, J. M. F. (1984). A joint treatment of varimax rotation and the problem of diagonalizing symmetric matrices simultaneously in the least-squares sense.Psychometrika, 49, 347–358. · Zbl 0564.62048
[24] ten Berge, J. M. F., Knol, D. L., & Kiers, H. A. L. (1988). A treatment of the orthomax rotation family in terms of diagonalization, and a re-examination of a singular value approach to varimax rotation.Computational Statistics Quarterly, 3, 207–217. · Zbl 0726.62090
[25] Tenenhaus, M., & Young, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data.Psychometrika, 50, 91–119. · Zbl 0585.62104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.