zbMATH — the first resource for mathematics

Splitting the square of a Schur function into its symmetric and antisymmetric parts. (English) Zbl 0853.05081
A new combinatorial description of the product of two Schur functions is considered. The key idea is to use domino tableaux (i.e. made up of \(1 \times 2\) rectangular boxes filled with integers increasing along the rows and strictly increasing along the columns) and to express the Littlewood-Richardson coefficients in terms of so-called Yamanouchi domino tableaux. In particular this approach gives a simple method of discriminating the tableaux in \(S_I S_I\) coming from symmetric parts \(S^2 (S_I)\). The \(q\)-analogues of the coefficients have also interesting combinatorial interpretations. It is shown that domino tableaux may be seen as the elements of a monoid, called the superplastic monoid. A new family of symmetric functions \((H\)-functions) are considered.
The article is self-contained, has many examples and algorithms and can be used as a good introduction into the domino tableaux method.

05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
Full Text: DOI
[1] Barbasch, D.; Vogan, D., Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259, 153-199, (1982) · Zbl 0489.22010
[2] Berenstein, A. D.; Zelevinsky, A. V., Triple multiplicities of sl\((r+1)\) and the spectrum of the exterior algebra of the adjoint representation, J. Alg. Combin., 1, 7-22, (1992) · Zbl 0799.17005
[3] Carré, C., The rule of Littlewood-Richardson in a construction of Berenstein-Zelevinsky, Int. J. of Algebra and Computation, 1, 473-491, (1991) · Zbl 0774.20009
[4] Carré, C., Plethysm of elementary functions, Bayreuther Mathematische Schriften, 31, 1-18, (1990) · Zbl 0762.20007
[5] C. Carré, “Le pléthysme,” Thèse, Université Paris 7 (1991).
[6] S. Fomin and D. Stanton, “Rim hook lattices,” Mittag-Leffler institute, preprint No. 23, 1991/92.
[7] Grosshans, F., The symbolic method and representation theory, Advances in Math., 98, 113-142, (1993) · Zbl 0831.20056
[8] Garfinkle, D., On the classification of primitive ideals for complex classical Lie algebras, I, Compositio Mathematica, 75, 135-169, (1990) · Zbl 0737.17003
[9] F. Grosshans, G.C. Rota, and J. Stein, “Invariant theory and superalgebras,” Amer. Math. Soc. Providence, RI, 1987. · Zbl 0648.15020
[10] Gel’fand, I. M.; Zelevinsky, A. V., Polyhedra in the scheme space and the canonical basis for irreducible representations of gl_{\(3\)}, Funct. Anal. Appl., 19, 72-75, (1985)
[11] I.M. Gel’fand and A.V. Zelevinsky, “Multiplicities and good bases for gl_{\(n\)},” Proc. III. Int. Semin. on Group-Theoretical Methods in Physics, Yurmala, 1985.
[12] G.D. James and A. Kerber, The representation theory of the symmetric group, Addison-Wesley, 1981.
[13] James, G. D.; Peel, M. H., Specht series for skew representations of symmetric groups, J. Algebra, 56, 343-364, (1978) · Zbl 0398.20016
[14] Kirillov, A. N., On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers, J. of Geometry and Physics, 5, 365-389, (1988) · Zbl 0695.22009
[15] Kerber, A.; Kohnert, A.; Lascoux, A., SYMMETRICA, an object oriented computer-algebra system for the symmetric group, J. Symbolic Computation, 14, 195-203, (1992) · Zbl 0823.20015
[16] A.N. Kirillov, A. Lascoux, B. Leclerc, and J.Y. Thibon, “Séries génératrices pour les tableaux de dominos,” C. R. Acad. Sci. Paris, t. 318, Série I, (1994), 395-400. · Zbl 0797.05079
[17] Knuth, D., Permutations, matrices and generalized Young tableaux, Pacific J. Math., 34, 709-727, (1970) · Zbl 0199.31901
[18] Kirillov, A. N.; Reshetikhin, N. Y., Bethe ansatz and the combinatorics of Young tableaux, Zap. Nauch. Semin. LOMI, 155, 65-115, (1986) · Zbl 0617.20025
[19] Lascoux, A., Cyclic permutations on words, tableaux and harmonic polynomials, 323-347, (1991), Madras · Zbl 0823.20012
[20] Littlewood, D. E., Polynomial concomitants and invariant matrices, Proc. London Math. Soc. (2), 43, 226, (1937) · JFM 63.0080.01
[21] Littlewood, D. E., Invariant theory, tensors and group characters, Phil. Trans. Roy. Soc. A, 239, 305-65, (1944) · Zbl 0060.04402
[22] D.E. Littlewood, The theory of group characters and matrix representations of groups, Oxford, 1950 (second edition).
[23] Littlewood, D. E., Modular representations of symmetric groups, Proc. Roy. Soc. A., 209, 333-353, (1951) · Zbl 0044.25702
[24] A. Lascoux, B. Leclerc, and J.Y. Thibon, “Une nouvelle expression des fonctions P de Schur,” C.R. Acad. Sci. Paris, t. 316, Série I, (1993), 221-224. · Zbl 0827.20016
[25] A. Lascoux, B. Leclerc, and J.Y. Thibon, “Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de 1”unité,” C.R. Acad. Sci. Paris, t. 316, Série I (1993), 1-6. · Zbl 0769.05095
[26] A. Lascoux and M.P. Schützenberger, Formulaire raisonné de fonctions symétriques, Publ. Math. Univ. Paris 7, 1985.
[27] Lascoux, A.; Schützenberger, M. P.; de Luca, A. (ed.), Le monoïde plaxique, (1981), Roma · Zbl 0517.20036
[28] Lascoux, A.; Schützenberger, M. P., Schubert polynomials and the Littlewood-Richardson rule, Letters in Math. Physics, 10, 111-124, (1985) · Zbl 0586.20007
[29] I.G. Macdonald, Symmetric functions and Hall polynomials, Oxford, 1979.
[30] Morris, A. O.; Sultana, N., Hall-Littlewood polynomials at roots of 1 and modular representations of the symmetric group, Math. Proc. Cambridge Phil. Soc., 110, 443-453, (1991) · Zbl 0765.05100
[31] Robinson, G. B., On the representation theory of the symmetric group, Amer. J. Math., 60, 745-760, (1938) · JFM 64.0070.01
[32] G. de B. Robinson, Representation theory of the symmetric group, Edinburgh, 1961.
[33] Stanton, D.; White, D., A Schensted algorithm for rim-hook tableaux, J. Comb. Theory A, 40, 211-247, (1985) · Zbl 0577.05001
[34] M. van Leeuwen, “A Robinson-Schensted algorithm in the geometry of flags for Classical Groups”, Thesis, 1989.
[35] Zelevinsky, A. V., A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, J. Algebra, 69, 82-94, (1981) · Zbl 0464.20010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.