×

zbMATH — the first resource for mathematics

The \(X\theta^ s\) spaces and unique continuation for solutions to the semilinear wave equation. (English) Zbl 0853.35017
Summary: The aim of this paper is twofold. First, we initiate a detailed study of the so-called \(X^s_\theta\) spaces attached to a partial differential operator. This includes localization, duality, microlocal representation, subelliptic estimates, solvability and \(L^p(L^q)\) estimates. Secondly, we obtain some theorems on the unique continuation of solutions to semilinear second-order hyperbolic equations across strongly pseudo-convex surfaces. These results are proved using some new \(L^p\to L^q\) Carleman estimates, derived using the \(X^s_\theta\) spaces. Our theorems cover the subcritical case; in the critical case, the problem remains open. Similar results hold for higher-order partial differential operators, provided that the characteristic set satisfies a curvature condition.

MSC:
35B60 Continuation and prolongation of solutions to PDEs
35L70 Second-order nonlinear hyperbolic equations
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] S. Alihnac, M.S. Bauendi, A nonuniqueness result for operators of principal type Preprint 93-85, Univ.Paris-Sud
[2] Alihnac S., A nonuniqueness result for operators of principal type Preprint 93–85,
[3] DOI: 10.1007/BF01896020 · Zbl 0787.35097
[4] DOI: 10.1073/pnas.75.10.4673 · Zbl 0391.35062
[5] DOI: 10.1006/jfan.1995.1119 · Zbl 0849.35064
[6] Grillakis, M. 1994. Presentation at the Nonlinear PDE Conference. Oberwolfach. 071994, Germany.
[7] Hörmander L., The Analysis of Linear Partial Differential Operators I-IV (1984)
[8] DOI: 10.1016/0001-8708(86)90096-4 · Zbl 0627.35008
[9] Kapitanski L., Leningrad Math. J. 1 pp 693– (1990)
[10] DOI: 10.1215/S0012-7094-93-07101-3 · Zbl 0787.35090
[11] S. Alihnac, M.S. Bauendi, A nonuniqueness result for operators of principal type Preprint 93-85, Univ.Paris-Sud C.E.Kenig, personal communication
[12] DOI: 10.1215/S0012-7094-87-05518-9 · Zbl 0644.35012
[13] Klainerman S., Internat. Math. Res. Notices 1994 55 (1987)
[14] DOI: 10.1006/jfan.1995.1075 · Zbl 0846.35085
[15] Mockenhaupt G., J. Amer. Math. Soc. 6 pp 65– (1993)
[16] DOI: 10.1090/S0894-0347-1989-0999662-3
[17] DOI: 10.2307/2154064 · Zbl 0763.35012
[18] Stein E.M., Harmonic Analysis 43 (1993)
[19] DOI: 10.1016/0022-1236(70)90027-3 · Zbl 0189.40701
[20] DOI: 10.1215/S0012-7094-77-04430-1 · Zbl 0372.35001
[21] D. Tataru A-priori estimates of Carleman’s type in domains with boundary, to appear, J. de Math. Pure et Appl. · Zbl 0835.35031
[22] Taylor M.E., Pseudodifferential Operators (1981) · Zbl 0453.47026
[23] Wolff T., J. Geom. Analysis 3 pp 620– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.