×

Microlocal dispersive smoothing for the Schrödinger equation. (English) Zbl 0856.35106

The authors discuss smoothing of initial states under the time development of the Schrödinger equation and generalizations thereof. They show that the microlocal smoothness of a solution at a point in phase space depends on non-trapping conditions on the bicharacteristic flow and the microlocalized moment properties of the initial state. This generalizes the fact that the smoothness of a solution of the free Schrödinger equation depends on the moments of the initial states which can be checked directly. These results contrast to analogous results for the propagation of singularities for hyperbolic equations.
Reviewer: H.Siedentop (Oslo)

MSC:

35Q40 PDEs in connection with quantum mechanics
35J10 Schrödinger operator, Schrödinger equation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agmon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 pp 151– (1975)
[2] Beals, Duke Math. J. 42 pp 1– (1975)
[3] Beals, Comm. Pure Appl. Math. 27 pp 1– (1974)
[4] Propagation des singularités des solutions d’équations analogues à l’équation de Schrödinger, pp. 1–14 in: Fourier Integral Operators and Partial Differential Operators, Springer Lecture Notes in Mathematics No. 459, Springer-Verlag, Berlin, 1975.
[5] Dispersive smoothing effects for generalized and high order KdV type equations, Doctoral Dissertation, Brown University, 1993.
[6] Constantin, J. Amer. Math. Soc. 1 pp 413– (1988)
[7] Craig, J. Differential Equations 87 pp 38– (1990)
[8] , and , Infinite gain of regularity for dispersive evolution equations, pp. 47–50 in: Microlocal Analysis and Nonlinear Waves, May 1989, IMA vol. 30, Springer Verlag, New York, 1991.
[9] Craig, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 pp 147– (1992)
[10] Enss, Comm. Math. Phys. 61 pp 285– (1978)
[11] Fujiwara, J. Anal. Math. 35 pp 41– (1979)
[12] Fujiwara, Duke Math. J. 47 pp 559– (1980)
[13] Ginibre, J. Math. Pures Appl. 64 pp 363– (1985)
[14] Ginibre, Ann. Inst. H. Poincaré Phys. Théor. 51 pp 221– (1989)
[15] Hayashi, Math. Z. 192 pp 637– (1986)
[16] Hayashi, J. Funct. Anal. 71 pp 218– (1987)
[17] Hayashi, J. Funct. Anal. 85 pp 307– (1989)
[18] Hörmander, Enseign. Math. 17 pp 99– (1971)
[19] Hörmander, Comm. Pure Appl. Math. 32 pp 359– (1979)
[20] Isozaki, J. Funct. Anal. 57 pp 270– (1984)
[21] Isozaki, Publ. Res. Inst. Math. Sci. 21 pp 889– (1985)
[22] Jensen, Math. Z. 191 pp 53– (1986)
[23] and , seminar presentations and personal communication, 1992 and 1993.
[24] Kato, Stud. Appl. Math. 8 pp 93– (1983)
[25] Kato, Ann. Inst. H. Poincaré Phys. Théor. 46 pp 113– (1987)
[26] Kenig, Indiana Univ. Math. J. 40 pp 33– (1991)
[27] , and , The initial value problem for a class of nonlinear dispersive equations, pp. 141–156 in: Functional-Analytic Methods for Partial Differential Equations, Springer Lecture Notes in Mathematics No. 1450, Springer-Verlag, Berlin, 1990.
[28] , and , On the hierarchy of the generalized KdV equations, preprint, 1992.
[29] Kruzhkov, Math. USSR-Sb. 48 pp 93– (1984)
[30] Lascar, Ann. Inst. Fourier (Grenoble) 27 pp 79– (1977) · Zbl 0349.35079
[31] Lascar, Comm. Partial Differential Equations 3 pp 201– (1978)
[32] Mourre, Comm. Math. Phys. 68 pp 91– (1979)
[33] Ponce, J. Differential Equations 78 pp 122– (1989) · Zbl 0699.35036
[34] Sjölin, Duke Math. J. 55 pp 699– (1987)
[35] Strichartz, Duke Math. J. 44 pp 705– (1977)
[36] Pseudodifferential Operators, Princeton Mathematical Series No. 34, Princeton University Press, 1981.
[37] Treves, Comm. Pure Appl. Math. 48 pp 13– (1995)
[38] Vega, Proc. Amer. Math. Soc. 102 pp 874– (1988)
[39] Weinstein, Amer. J. Math. 107 pp 1– (1985)
[40] Weinstein, Bull. Amer. Math. Soc. 6 pp 449– (1982)
[41] Yajima, Comm. Math. Phys. 110 pp 415– (1987)
[42] Yamazaki, Algebraic Analysis 11 pp 911– (1988)
[43] Reconstructions of singularities for solutions of Schrödinger’s equation, Doctoral Dissertation, U.C. Berkeley, 1981.
[44] Zelditch, Comm. Math. Phys. 90 pp 1– (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.