On some techniques for approximating boundary conditions in the finite element method. (English) Zbl 0856.65130

The foundations for the theory of mixed finite element methods were laid down by I. Babuška [Numer. Math. 20, 179-192 (1973; Zbl 0258.65108)] who introduced the idea of approximating essential boundary conditions in the Dirichlet problem by using a Lagrange multiplier.
The author recalls the method of Babuška and proposes a simplification of the stabilized formulation of H. J. C. Barbosa and T. J. R. Hughes [Comput. Methods Appl. Mech. Eng. 85, No. 1, 109-128 (1991; Zbl 0764.73077) and Numer. Math. 62, No. 1, 1-15 (1992; Zbl 0765.65102)]. Next he shows that this method is closely related to a classical method by J. Nitsche [Abh. Math. Sem. Univ. Hamburg 36, 9-15 (1971; Zbl 0229.65079)].


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
Full Text: DOI


[1] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192 (1973) · Zbl 0258.65108
[2] Babuška, I.; Aziz, A., Survey lectures on the mathematical foundations of the finite element method, (Aziz, A., The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations (1973), Academic Press: Academic Press New York) · Zbl 0268.65052
[3] Baiocchi, C.; Brezzi, F.; Marini, L. D., Stabilization of Galerkin methods and application to domain decomposition, (Bensoussan, A., Proc. Conf. of the Occasion of the 25th Anniversary of INRIA (1992), Springer: Springer Berlin)
[4] Barbosa, J. C.; Hughes, T. J.R., The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Mech. Eng., 85, 109-128 (1991) · Zbl 0764.73077
[5] Barbosa, J. C.; Hughes, T. J.R., Boundary Lagrange multipliers in finite element methods: error analysis in natural norms, Numer. Math., 62, 1-15 (1992) · Zbl 0765.65102
[6] Brezzi, F., On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 2, 129-151 (1974) · Zbl 0338.90047
[7] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[8] Dorr, M. R., A domain decomposition preconditioner with reduced rank interdomain coupling, Appl. Numer. Math., 8, 333-352 (1991) · Zbl 0743.65027
[9] Farhat, C.; Geradin, M., Using a reduced number of Lagrange multipliers for assembling parallel incomplete field finite element approximations, Comput. Methods Appl. Mech. Eng., 97, 333-354 (1992) · Zbl 0826.73056
[10] Franca, L. P.; Hughes, T. J.R.; Stenberg, R., Stabilized finite element methods, (Gunzburger, M.; Nicolaides, R. A., Incompressible Computational Fluid Dynamics (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 87-107, Ch. 4 · Zbl 1189.76339
[11] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problems and applications, Comput. Methods Appl. Mech. Eng., 111, 288-303 (1994)
[12] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 112, 133-148 (1994) · Zbl 0845.76069
[14] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Eng., 65, 85-96 (1987) · Zbl 0635.76067
[15] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity (1988), SIAM: SIAM Philadelphia · Zbl 0685.73002
[16] LeTallec, P., Neumann-Neumann domain decomposition algorithms for solving 2D elliptic problems with nonmathing grids (1992), INRIA: INRIA Roquencourt, preprint
[17] Nagtegaal, J.; Rebelo, N., On the development of a general purpose finite element program for analysis of forming processes, Int. J. Numer. Methods Eng., 25, 113-131 (1988) · Zbl 0628.73052
[18] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Univ. Hamburg, 36, 9-15 (1970/1971) · Zbl 0229.65079
[19] Pitkäranta, J., Boundary subspaces for the finite element method with Lagrange multipliers, Numer. Math., 33, 273-289 (1979) · Zbl 0422.65062
[20] Pitkäranta, J., Local stability conditions for the Babuška method of Lagrange multipliers, Math. Comput., 35, 1113-1129 (1980) · Zbl 0473.65072
[21] Pitkäranta, J., The finite element method with Lagrange multipliers for domain with corners, Math. Comput., 37, 13-30 (1981) · Zbl 0474.65081
[22] Verfürth, R., Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II, Numer. Math., 59, 615-636 (1991) · Zbl 0739.76034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.