A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics. (English) Zbl 0857.76079

Summary: We propose a conservative and entropic discrete-velocity method to compute the solutions of the Boltzmann equation in the case of monoatomic species. We begin by defining a discrete collision kernel on a velocity lattice which exhibits all the properties of the continuous kernel. The continuous Boltzmann equation is replaced by a Boltzmann equation for a discrete velocity gas, which is a hyperbolic system. This equation is discretized by a finite volume scheme. For the evaluation of the collision term we use acceleration procedures of the Monte Carlo type. The possibilities of our scheme are illustrated by numerical tests in one and two space dimensions.


76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
Full Text: DOI


[1] Bird, G. A. 1976. ”Molecular Gas Dynamics”. Oxford: Clarendon Press.
[2] Buet C., Résolution déterministe de l’équation de Boltzmann note interne CEA (1994)
[3] DOI: 10.1007/978-1-4612-1039-9
[4] Gatignol R., Théorie cinétique des yaz à repartitions discrètes de vitesses (1975)
[5] Goldstein D., Rarefied Gas Dynamics: Theoretical and Computational Techniques 118 (1989)
[6] Goldstein D. B., Phys. Fluids 4 pp 1831– (1992)
[7] Gropengiesser F., The state of Art in Appl. and Industrial math. (1990)
[8] Hardy G. H., An introduction to the number theory (1938) · Zbl 0020.29201
[9] DOI: 10.1007/BF01053594 · Zbl 0935.82560
[10] DOI: 10.1080/00411459408203853 · Zbl 0811.76079
[11] Inamuro T., Numerical Study of Discrete Velocity Gases pp 2196– (1990) · Zbl 0718.76087
[12] DOI: 10.1143/JPSJ.49.2042
[13] Rogier F., A direct Method for solving the Boltzmann Equation, Transp. Th. Stat. Phys (1994) · Zbl 0811.76050
[14] Schneider J., Une méthode déterministe pour la résolution de l’équation de Boltzmann 6 (1993)
[15] Van Leer B., V, A second order sequel of Godunov’s method, J. Comput. Phys. 32 (1979) · Zbl 1364.65223
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.