×

zbMATH — the first resource for mathematics

Analytical and qualitative model-based fault diagnosis — a survey and some new results. (English) Zbl 0857.93015
Author’s abstract: The state of the art of model-based fault diagnosis in plants of automatic control systems is reviewed and some new results of the author’s research group are outlined. Attention is focused upon both the analytical approach that makes use of quantitative mathematical models and the knowledge-based approach using qualitative models along with qualitative and heuristic reasoning. In the latter case, priority is given to the use of fuzzy models for residual generation and fuzzy reasoning for residual evaluation. By the suggestion of a knowledge-based observer-like concept for residual generation, the basic idea of a novel type of diagnostic observer, the so-called knowledge observer is introduced. The neural network approach is briefly outlined for both residual generation and evaluation. Moreover, different strategies of practical implementation are discussed. These include a novel human operator supported technique of fuzzy residual evaluation which allows one to make direct use of the human natural intelligence, common sense and experience. The advantages and disadvantages of the different approaches are pointed out and some perspectives for future research are given.
Reviewer: D.Franke (Hamburg)

MSC:
93B07 Observability
93E10 Estimation and detection in stochastic control theory
93C41 Control/observation systems with incomplete information
93B52 Feedback control
93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barschdorff D. Adaptive Echtzeitverfahren als Hilfsmittel der Fehlerdiagnose GMA-Aussprachetag, Baden-Baden, VDI-Berichte 854, 1990.
[2] Basseville, M.; Benveniste, A., Detection of abrupt changes in signals and dynamic systems. lecture notes in control and information sciences, 77, (1985), Springer Verlag Berlin
[3] Brunet, J.; Jaume, D.; Labarrère, M.; Rault, A.; Vergé, M., Détection et diagnostic de pannes approche par modélisation, (1990), Hermes Paris
[4] Frank PM, Keller L. Entdeckung von Instrumentenfehlanzeigen mittels Zustandsschätzung in technischen Regelungssystemen. VDI Fortschrittsberichte, Reihe 8, 80, 1984.
[5] Patton, R.J.; Frank, P.M.; Clark, R.N., Fault diagnosis in dynamic systems theory and application, (1989), Prentice Hall Englewood Cliffs, NJ
[6] Tzafestes, S.G.; Singh, M.; Schmidt, G., System fault diagnostics, reliability and related knowledge based approaches, III, (1986), D. Reidel Dordrecht, Holland, (Hrsg)
[7] Chow, E.Y.; Willsky, A.S., Analytical redundancy and the design of robust failure detection systems, IEEE trans autom contr, 29, 603-614, (1984) · Zbl 0542.90040
[8] de Kleer, I.; Williams, B.C., Diagnosing multiple faults, Artificial intelligence, 32, 97-130, (1987) · Zbl 0642.94045
[9] Filbert, D., Fault diagnosis in nonlinear electromechanical systems by continuous time parameter estimation, ISA transactions, 24, 3, (1985)
[10] Frank, P.M., Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-A survey and some new results, Automatica, 26, 459-474, (1990) · Zbl 0713.93052
[11] Frank, P.M., Enhancement of robustness in observerbased fault detection, (), 275-287, 1; Int J Control 1994;59;955-981
[12] Frank, P.M., Robust model-based fault detection in dynamic systems, (), 1-13
[13] Frank, P.M., Fault diagnosis in dynamic systems using software redundancy, European journal of diagnosis and safety in automation, 1, 2, 113-143, (1992)
[14] Frank, P.M., Advances in observer-based fault diagnosis, (), 817-836, April 5-8, vol. 3
[15] Frank, P.M.; Seliger, R., Fault detection and isolation in automatic processes, (), 241-287, Part 5
[16] Frank, P.M.; Ding, X., Frequency domain approach to minimizing detectable faults in FDI systems, Appl math comp sci, 3, 3, 417-443, (1993) · Zbl 0787.93041
[17] Gertler, J., Analytical redundancy methods in fault detection and isolation, (), 9-21, vol. 1
[18] Gertler, J.; Singer, D., A new structural framework for parity equation based failure detection and isolation, Automatica, 26, 381-388, (1990) · Zbl 0701.90039
[19] Isermann, R., Fehlerdiagnose mit prozebmodellen, Technisches messen, 51, 10, 345-355, (1984)
[20] Isermann, R., Wissensbasierte fehlerdiagnose technischer prozesse, at-automatisierungstechnik, 36, 11, (1988), Jahrgang · Zbl 0669.93067
[21] Isermann, R., Fault diagnosis of machines via parameter estimation and knowledge processing, Automatica, 29, 815-836, (1993) · Zbl 0800.93155
[22] Milne, R., Strategies for diagnosis, IEEE transactions on systems, man and cybernetics, SMC-17, 333-339, (1987)
[23] Patton, R.J.; Chen, J., A review of parity space approaches to fault diagnosis, (), 239-255, vol. 1
[24] Patton, R.J., Robustness issues in fault-tolerant control, (), 5-7, late paper
[25] Willsky, A.S., A survey of design methods for failure detection in dynamic systems, Automatica, 12, 601-611, (1976) · Zbl 0345.93067
[26] Frank, P.M., Robust fault diagnosis using unknown input observer schemes, ()
[27] Delmaire, G.; Cassar, J.P.; Staroswiecki, M., Comparison of identification and parity space approach for failure detection in single-input single-output systems, IEEE conference on control applications, Glasgow, 2, 865-870, (1994)
[28] Staroswiecki, M.; Cassar, J.P.; Cocquempot, V., Generation of optimal structured residuals in the parity space, (), 535-542, vol 5
[29] Gertler, J., Diagnosing parametric faults: from parameter estimation to parity relations, Acc, 1615-1620, (1995), Seattle
[30] Gertler, J.; Kunwer, M., Optimal residual decoupling for robust fault diagnosis, Int J control, 61, 395-421, (1995) · Zbl 0817.93039
[31] Patton, R.J., Robust fault diagnosis using eigenstructure assignment of observers, ()
[32] Wünnenberg J. Observer-based fault detection in dynamic systems. Diss. Universität Duisburg, Fachgebiet MeB- und Regelungstechnik, Fortschrittsberichte VDI, Reihe 8, Nr 222, VDI-Verlag Dusseldorf, 1990.
[33] Ding, X.; Frank, P.M., Fault detection via factorization approach, Syst. contr. lett, 14, 431-436, (1990) · Zbl 0703.93068
[34] Ding, X.; Frank, P.M., Frequency domain approach and threshold selector for robust model-based fault detection and isolation, (), 307-312
[35] Ding X. Frequenzbereichsverfahren zur beobachtergestiitzten Fehlerentdeckung. Diss. Universitat Duisburg, Fachgebiet MeB- und Regelungstechnik 1991, VDI Fortschrittsbericht Reihe 8, MeB-, Steuerrungs- und Regelungstechnik Nr. 295, 1992.
[36] Frank, P.M.; Ding, X., Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis, Automatica, 30, 789-804, (May 1994)
[37] Staroswiecki, M.; Cocquempot, V.; Cassar, J.P., A general approach for multicriteria optimization of structured residuals, (), 800-807, April 5-8, vol. 2
[38] Seliger, R. Robuste beobachtergestritzte Fehlerdelektion in nicht-linearen unsicheren systemen. Diss. Universital Duisburg, Fachgebiet MeB-und Regelungstechnile, Fortschoittsberichle VDI Reihe 8, Nr. 344, VDI-Verlag Dusseldorf, 1993.
[39] Clark, R.N., State estimation schemes for instrument fault detection, ()
[40] Gertler, J., An evidential reasoning extension to quantitative model-based failure diagnosis, IEEE trans. syst., man and cybernetics, 22, 275-289, (1992)
[41] Alcorta Garcia, E.; Frank, P.M., On the relationship between observer and parameter identification based approaches to fault detection, ()
[42] Isermann, R.; Freyermuth, B., Process fault diagnosis based on process model knowledge, parts I (principles for fault diagnosis with parameter estimation) and II (case study experiments), ASME J dynamic systems, measurement control, 113, 620-626, (1991), 627-633 · Zbl 0744.93006
[43] Rault, A.; Jaume, D.; Verge, M., Industrial process fault detection and localization, (), 1789-1794, vol 4
[44] Goodwin, G.C.; Sin, K.S., Adaptive filtering prediction and control, (1984), Prentice Hall Englewood Cliffs, NJ · Zbl 0653.93001
[45] Magni, J.-F., On continuous time parameter identification by using observers, IEEE trans aut control, 40, 10, 1789-1792, (October 1995)
[46] Emami-Naeini, A.E., Effect of model uncertainty of failure detection: the threshold selector, IEEE trans. aut. control, AC-33, 2, 1106-1115, (1988) · Zbl 0659.93062
[47] Willsky, A.S.; Jones, H.L., A generalized likelihood ratio testing approach for the detection and estimation of jumps in linear systems, IEEE trans autom control, 21, 108-112, (1976) · Zbl 0316.93038
[48] Frelicot, C., Un systeme adaptif de diagnostic par reconnaissance des formes floue, These UTC, (1992)
[49] Montmain, J.; Gentil, S., Decision-making in fault detection: a fuzzy approach, (), 653-660, vol. 2
[50] Sauter, D.; Dubois, G.; Levrat, E.; Brémont, J., (), 781-788, vol. 2
[51] Schneider, H., Implementation of a fuzzy concept for supervision and fault detection of robots, (), 775-780, 7-10 vol. 2
[52] Ulieru, M., A fuzzy-logic based computer assisted fault diagnosis system, (), 689-698, vol. 2
[53] Himmelblau, D.M.; Braker, R.W.; Suewatanakul, W., Fault classification with the aid of artificial neural networks, (), 369-373, Sept. 10-13
[54] Himmelblau, D.M., Use of artificial neural networks to monitor faults and for troubleshooting in the process industries, (), 144-149, April 22-24
[55] Hoskins, J.C.; Kaliyur, K.M.; Himmelblau, D.M., Fault diagnosis in complex chemical plants using artificial neural networks, Aiche j, 37, 137-142, (1991)
[56] Koppen-Seliger, B.; Frank, P.M., Fault detection and isolation in technical processes with neural networks, (), 2414-2419
[57] Sorsa, T.; Suontausta, J.; Koivo, H.N., Dynamic fault diagnosis using radial basis function networks, (), 160-169, April 5-7, vol. 1
[58] Tzafestas, S.G.; Dalianis, P.J., Fault diagnosis in complex systems using artificial neural networks, (), 877-882, August 24-26
[59] Searl, E., Diagnosis and sensor validation through knowledge of structure and function, IEEE trans syst, man cybernetics, 17, 360-369, (1987)
[60] Dvorak, D.; Kuipers, B.J., Model-based monitoring of dynamic systems, (), vol 2 · Zbl 0718.68078
[61] Kiupel, N.; Frank, P.M., Process supervision with the aid of fuzzy logic, (), 409-414, 2
[62] Ulieru, M.; Isermann, R., Design of a fuzzy logic based diagnostic model for technical processes, ()
[63] Davis, R., Diagnostic reasoning based on structure and behavior, Artificial intelligence, 24, 347-410, (1984)
[64] Genesereth, M.R., The use of design descriptions in automated diagnosis, Artificial intelligence, 24, 411-436, (1984)
[65] Reiter, R., A theory of diagnosis from first principles, Artificial intelligence, 32, 57-95, (1987) · Zbl 0643.68122
[66] Forbus, K.D., Qualitative process theory, Artificial intelligence, 24, 85-168, (1984)
[67] de Kleer, I.; Brown, J.S., A qualitative physics based on confluences, Artificial intelligence, 24, 7-83, (1984)
[68] Kuipers, B., Common sense reasoning about causality: deriving behavior from structure, Artificial intelligence, 24, 169-204, (1984)
[69] Kuipers, B., Qualitative simulation, Artificial intelligence, 29, 289-338, (1986) · Zbl 0624.68098
[70] Kuipers, B., Qualitative simulation as causal explanation, IEEE trans systems, man and cybernetics, 17, 3, 432-444, (1987)
[71] Leitch, R.R.; Shen, Q.; Coghil, G.; Chantler, M.; Slater, A., Qualitative model-based diagnosis of dynamic systems, ()
[72] Ng, H.T., Model-based, multiple fault diagnosis of timevarying, continuous physical devices, (), 9-15
[73] Oyeleye, O.O.; Finch, F.E.; Kramer, M.A., Qualitative modeling and fault diagnosis of dynamic processes by MIDAS, Chemical engineering communications, 96, 205-228, (1990)
[74] Terpstra, V.J.; Verbruggen, H.B.; Hoogland, M.W.; Ficke, R.A.E., A real-time, fuzzy, deep-knowledge based faultdiagnosis system for CSTR, (), 26-31
[75] Berleant, D.; Kuipers, B., Qualitative-numeric simulation with Q3, (), 3-16
[76] Shen, Q.; Leitch, R., Fuzzy qualitative simulation, IEEE trans. on systems, man and cybernetics, 23, 4, 1038-1064, (1993)
[77] Leitch, R.R.; Shen, Q., Prioritising behaviour in qualitative simulation, ()
[78] Shen, Q., Application studies of fuzzy qualitative simulation, ()
[79] Jen Chang, S.; Di Cesare, F.; Goldbogen, G., Failure propagation trees for diagnosis in manufacturing systems, IEEE trans systems man and cybernetics, 21, 767-776, (July 1991)
[80] Dubuisson, B., Diagnostic et reconnaissances de formes, (1990), Hermes Paris
[81] Sorsa, T.; Koivo, H.N., Application of artificial neural networks in process fault diagnosis, (), 133-138, 10-13 vol. 2
[82] Erfahrungswissen, qualitativen und quantitativen Modellen fur die Anlageuberwachung und Alarmgenerierung. VDI-Fortschrittsberichte, Reihe 20, Nr 63, VDI Verlag Dusseldorf, 1992
[83] [EUREKA Project EU996 DIALOGS]
[84] Tzafestas, S.G., Knowledge-based system diagnosis supervision and control, (1989), Plenum New York
[85] Tzafestas, S.G., System fault diagnosis using the knowledge- based methodology, (), Chapter 15
[86] Forbus, K.D., Interpreting measurements of physical systems, (), 113-117
[87] Frank PM, Kiupel N. Fuzzy supervision for lean production. Proc. 6th IAR Colloqu. Duisburg, 1992, 163-177; see also Frank PM, Kiupel N. Fuzzy supervision. at-Automatisierungstechnik 41, 1993; Heft 8;293-299
[88] Himmelblau, D.M., Fault detection and diagnosistoday and tomorrow, (), 95-105, Sept 28-0ct 1
[89] Sorsa, T.; Koivo, H.N.; Korhonen, R., Application of neural networks in the detection of breaks in a paper machine, (), 162-167, April 22-24
[90] Polycarpou, M.M.; Vemuri, A.T., Learning methodology for failure detection and accomodation, IEEE control systems intelligence and learning, 15, 3, 16-24, (1995)
[91] Fathi, Z.W.; Ramirez, F.; Tavarez, A.P., A knowledgebased system with embedded estimation components for fault detection and isolation in process plants, (), 32-37
[92] Fink, P.K.; Lusth, J.C., Expert systems and diagnostic expertise in mechanical and electrical domains, IEEE transactions on systems, man and cybernetics, SMC- 17, (1987)
[93] Zhang J. Expert systems in on-line process control and fault diagnosis. PhD thesis, City University, London, 1991.
[94] Freyermuth B. Wissensbasierte Fehlerdiagnose am Beispiel eines Industrierobotes. VDI Berichte, Reihe 8, Nr 315, 1993.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.