On the Lieb-Thirring constants \(L_{\gamma, 1}\) for \(\gamma \geq 1/2\). (English) Zbl 0858.34075

Summary: Let \(E_i(H)\) denote the negative eigenvalues of the one-dimensional Schrödinger operator \(Hu:=-u''-Vu\), \(V\geq 0\), on \(L_2(\mathbb{R})\). We prove the inequality \[ \sum_i|E_i(H)|^\gamma\leq L_{\gamma,1} \int_{\mathbb{R}} V^{\gamma+1/2}(x)dx\tag{1} \] for the “limit” case \(\gamma=1/2\). This will imply improved estimates for the best constants \(L_{\gamma,1}\) in (1) as \(1/2<\gamma<3/2\).


34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
Full Text: DOI arXiv


[1] Aizenman, M., Lieb, E.: On semi-classical bounds for eigenvalues of Schrödinger operators. Phys. Lett.66A, 427–429 (1978)
[2] Bargmann, V.: On the number of bound states in a central field of force. Proc. Nat. Acad. Sci. USA38, 961–966 (1952) · Zbl 0048.21903
[3] Bergh, J., Löfström, J.: Interpolation spaces. An Introduction. Berlin, Heidelberg, New York: Springer 1976, 123p · Zbl 0344.46071
[4] Birman, M.S.: The spectrum of singular boundary problems. Mat. Sb.55 No. 2, 125–174 (1961), translated in Am. Math. Soc. Trans. (2),53, 23–80 (1966) · Zbl 0146.34403
[5] Birman, M.Sh., Solomyak, M.Z.: Schrödinger operator. Estimate for number of bounded states as a function-theoretical problem. Am. Math. Soc. Trans. (2), vol.150, 1–54 (1992) · Zbl 0756.35057
[6] Blanchard, Ph., Stubbe, J.: New estimates on the number of bound states of Schrödinger operators. Lett. Math. Phys.14, 215–225 (1987) · Zbl 0641.35016
[7] Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Trans. AMS224, 93–100 (1977) · Zbl 0362.47006
[8] Faddeev, L.D., Zakharov, V.E.: Korteweg-de Vries equation: A completely integrable hamiltonian system. Funct. Anal. Appl.5, 280 (1971) · Zbl 0257.35074
[9] Glaser, V., Grosse, H., Martin, A.: Bounds on the number of eigenvalues of the Schrödinger operator. Commun. Math. Phys.59, 197–212 (1978) · Zbl 0373.35050
[10] Helffer, B., Robert, D.: Riesz means of bounded states and semi-classical limit connected with a Lieb-Thirring conjecture I, II. I-J. Asymp. Anal., to appear, II-Ann. de l’Inst. H. Poincare,53, 2, 139–147 (1990) · Zbl 0728.35078
[11] Laptev, A.: On inequalities for the bound states of Schrödinger operators to appear in Proc. Conf. Holzhau 1994
[12] Li, P., Yau, Sh.-T.: On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys.88, 309–318 (1983) · Zbl 0554.35029
[13] Lieb, E.: On characteristics exponents in turbulence. Commun. Math. Phys.92, 473–480 (1984) · Zbl 0598.76054
[14] Lieb, E.: The number of bound states of one body Schrödinger operators and the Weyl problem. Bull. Am. Math. Soc.82, 751–753 (1976) · Zbl 0329.35018
[15] Lieb E., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Math. Phys., Essays in Honor of Valentine Bargmann, Princeton (1976) · Zbl 0342.35044
[16] Rozenblum, G.V.: Distribution of the discrete spectrum of singular differential operators. Dokl. AN SSSR,202, N 5 1012–1015 (1972), Izv. VUZov, Matematika,N.1, 75–86 (1976)
[17] Simon, B.: The bound state of weakly coupled Schrödinger operators on one and two dimensions. Ann. Phys.97, 279–288 (1976) · Zbl 0325.35029
[18] Schwinger, Y.: On the bound states for a given potential. Proc. Nat. Acad. Sci. USA47, 122–129 (1961)
[19] Triebel, H.: Interpolation Theory, Functional Spaces, Differential Operators. Berlin VEB Verlag Deutscher Wissenschaften 1977 · Zbl 0351.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.