zbMATH — the first resource for mathematics

Convergence of shock capturing schemes for the compressible Euler-Poisson equations. (English) Zbl 0858.76051
Summary: We are concerned with approximate methods to construct global solutions with geometrical structure to the compressible Euler-Poisson equations in several space variables. A shock capturing numerical scheme is introduced to overcome the new difficulties from the nonlinear resonance of the system and the nonlocal behavior of the source terms. The convergence and consistency of the shock capturing scheme for the equations are proved with the aid of the compensated compactness method. Then new existence results for global solutions with geometrical structure are obtained. The traces of the weak solutions are defined and then the weak solutions are proved to satisfy the boundary conditions. The initial data are arbitrarily large with \(L^\infty\) bounds.
Reviewer: Reviewer (Berlin)

76M20 Finite difference methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Ascher, U.M., Markowich, P.A., Pietra, P., Schmeiser, C.: A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model. Math. Mod. Meth. Appl. Sci.1(3), 347–376 (1991) · Zbl 0800.76032 · doi:10.1142/S0218202591000174
[2] Baccarani, G., Wordeman, M.R.: An investigation of steady-state velocity overshoot effects in Si and GaAs devices. Solid State Electron28, 404–416 (1985) · doi:10.1016/0038-1101(85)90100-5
[3] Bell, T.E.: The quest for ballistic action. IEEE Spectrum23, 36–38 (1986)
[4] Blotekjaer, K.: Transport equations for electrons in two-valley semiconductors. IEEE Transactions on Electron Devices, ED-17,1, 38–47 (1970) · doi:10.1109/T-ED.1970.16921
[5] Chen, D.P., Eisenberg, R.S., Jerome, J.W., Shu, C.W.: A hydrodynamic model of temperature change in open ionic channels. Biophys. J.69, 2304–2322 (1995) · doi:10.1016/S0006-3495(95)80101-3
[6] Chen, G.-Q.: Convergence of Lax-Friedrichs scheme for isentropic gas dynamics, III. Acta Math. Sci.8, 243–276 (1988) (in Chinese):6, 75–120 (1986)
[7] Chen, G.-Q.: The compensated compactness method and the system of isentropic gas dynamics MSRI Preprint 00527-91, Berkeley (1990)
[8] Chen, G.-Q.: The method of quasidecoupling to conservation laws. Arch. Rat. Mech. Anal.121, 131–185 (1992) · Zbl 0797.35112 · doi:10.1007/BF00375416
[9] Chen, G.-Q., Glimm, J.: Global solutions to the compressible Euler equations with geometrical structure. Commun. Math. Phys. (to appear) (1996) · Zbl 0857.76073
[10] Chen, G.-Q., Glimm, J.: Global solutions to the cylindrically symmetric rotating motion of isentropic gases. Z. angew. Math. Phys.47 (1996) (to appear) · Zbl 0864.76080
[11] Chen, Z., Cockburn, B., Gardner, C.L., Jerome, J.: Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comp. Phys.117, 274–280 (1995) · Zbl 0833.76033 · doi:10.1006/jcph.1995.1065
[12] Cordier, S., Degond, P., Markowich, P., Schmeiser, C.: Traveling wave analysis and jump relations for Euler-Poisson model in the quasineutral limit, Preprint (1994) · Zbl 0805.76094
[13] Dafermos, C.: Polygonal approximations of solutions of the initial-value problem for a conservation law. J. Math. Anal. Appl.38, 33–41 (1972) · Zbl 0233.35014 · doi:10.1016/0022-247X(72)90114-X
[14] Degond, P., Markowich, P.A.: On a one-dimensional steady-state hydrodynamic model for semiconductors. Appl. Math. Letters3, 25–29 (1990) · Zbl 0736.35129 · doi:10.1016/0893-9659(90)90130-4
[15] Ding, X., Chen, G.-Q., Luo, P.: Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (I)–(II). Acta Mathematica Scientia7, 467–480 (1987);8, 61–94 (1988) (in Chinese);5, 415–432, 433–472 (1985)
[16] Ding, X., Chen, G.-Q., Luo, P.: Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics. Commun. Math. Phys.121, 63–84 (1989) · Zbl 0689.76022 · doi:10.1007/BF01218624
[17] DiPerna, R.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys.91, 1–30 (1983) · Zbl 0533.76071 · doi:10.1007/BF01206047
[18] Embid, P., Goodman, J., Majda, A.: Multiple steady for 1-D transonic flow. SIAM J. Sci. Stat. Comp.5, 21–41 (1984) · Zbl 0573.76055 · doi:10.1137/0905002
[19] Fang, W., Ito, K.: One-dimensional hydrodynamic model for semiconductors by viscosity method. Proc. International Conf. on Diff. Eqs., Claremont, California, June 1994, to appear · Zbl 0926.35142
[20] Fatemi, E., Jerome, J., Osher, S.: Solution of the hydrodynamic device model using highorder nonoscillatory shock capturing algorithms. IEEE Transactions on Computer-Aided Design10, 2, 232–243 (1991) · Zbl 05447997 · doi:10.1109/43.68410
[21] Gamba, I.M.: Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors. Comm. P.D.E.17, 553–577 (1992) · Zbl 0748.35049
[22] Gamba, I.M.: Viscosity approximating solutions to ODE systems that admit shocks and their limits: Preprint (1994) · Zbl 0799.34056
[23] Gamba, I.M., Morawetz, C.: A viscous approximation for a 2D steady semiconductor or transonic gas dynamic flow: Existence theorem for potential flow. Preprint, Courant Institute (1995) · Zbl 0863.76029
[24] Gardner, C.L.: Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device. IEEE Transactions on Electron Devices38, 392–398 (1991) · doi:10.1109/16.69922
[25] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Berlin, Heidelberg, New York: Springer 1983 · Zbl 0562.35001
[26] Glaz, H., Liu, T.-P.: The asymptotic analysis of wave interactions and numerical calculation of transonic nozzle flow. Avd. Appl. Math.5, 111–146 (1984) · Zbl 0598.76065
[27] Glimm, J., Marshall, G., Plohr, B.: A generalized Riemann problem for quasi-one-dimensional gas flow. Adv. Appl. Math.5, 1–30 (1984) · Zbl 0566.76056 · doi:10.1016/0196-8858(84)90002-2
[28] Heidrich, A.: Global weak solutions to initial boundary value problems for the wave equation with large data. Arch. Rat. Mech. Anal.126, 333–368 (1994) · Zbl 0812.35076 · doi:10.1007/BF00380896
[29] Jochmann, F.: Global weak solutions of the one-dimensional hydrodynamic model for semi-conductors. Math. Mod. Meth. Appl. Sci.3, 759–788 (1993) · Zbl 0799.35204 · doi:10.1142/S0218202593000382
[30] Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. CBMS.11, SIAM 1973 · Zbl 0268.35062
[31] LeFloch, P.G.: Glimm method applied to quasilinear hyperbolic systems with source-term. Preprint 218, Ecole Polytechnique, France, 1990
[32] Lions, P.L., Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics andp-systems. Commun. Math. Phys.163, 415–431 (1993) · Zbl 0799.35151 · doi:10.1007/BF02102014
[33] Liu, T.-P.: Quasilinear hyperbolic system. Commun. Math. Phys.68, 141–172 (1979) · Zbl 0435.35054 · doi:10.1007/BF01418125
[34] Liu, T.-P.: Nonlinear resonance for quasilinear hyperbolic equation. J. Math. Phys.28, 2593–2602 (1987) · Zbl 0662.35068 · doi:10.1063/1.527751
[35] Makino, T., Takeno, S.: Initial boundary value problem for the spherically symmetric motion of isentropic gas. Japan J. Indust. Appl. Math.11, 171–183 (1994) · Zbl 0797.76077 · doi:10.1007/BF03167220
[36] Marcati, P., Natalini, R.: Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation. Arch. Rat. Mech. Anal.129, 129–145 (1995) · Zbl 0829.35128 · doi:10.1007/BF00379918
[37] Markowich, P.A., Ringhofer, C., Schmeiser, C. Semiconductor Equations. Berlin, Heidelber, New York: Springer 1990
[38] Poupaud, F., Rascle, M., Vila, J.P.: Global solutions to the Isothermal Euler-Poisson system with arbitrary large data. J. Diff. Eqs.123, 93–121 (1995) · Zbl 0845.35123 · doi:10.1006/jdeq.1995.1158
[39] Roe, P.L.: Upwind differencing schemes for hyperbolic conservation laws with source terms. Lecture Notes in Math., Nonlinear Hyperbolic Problems, vol. 1270, Berlin, Heidelberg, New York: Springer 1986, pp. 41–51
[40] Van Leer, B.: On the relation between the upwind-differencing scheme of Godunov, Engquist-Osher and Roe. SIAM J. Sci. Stat. Comp.5, 1–19 (1984) · Zbl 0547.65065 · doi:10.1137/0905001
[41] Van Roosbroeck, W.V.: Theory of flow of electrons and holes in germanium and other semi-conductors. Bell Syst. Techn. J.29, 560–607 (1950) · Zbl 1372.35295
[42] Smoller, J.: Shok Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York: Springer 1994 · Zbl 0807.35002
[43] Tartar, L.: Compensated compactness and applications to partial differential equations. Research Notes in Mathematics, Nonlinear Analysis and Mechanics. R.J. Knops (ed.) vol.4, New York: Pitman Press4, 1979 · Zbl 0437.35004
[44] Zhang, B.: Convergence of the Godunov scheme for a simplified one-dimensional hydro-dynamic model for semiconductor devices. Commun. Math. Phys.157, 1–22 (1993) · Zbl 0785.76053 · doi:10.1007/BF02098016
[45] Zhang, B., Jerome, J.: On a steady-state quantum hydrodynamic model for semiconductors. Nonlinear Analysis26, 845–856 (1996) · Zbl 0882.76105 · doi:10.1016/0362-546X(94)00326-D
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.