×

Čech cocycles for characteristic classes. (English) Zbl 0859.57029

Summary: We give general formulae for explicit Čech cocycles representing characteristic classes of real and complex vector bundles, as well as for cocycles representing Chern-Simons classes of bundles with arbitrary connections. Our formulae involve integrating differential forms over moving simplices inside homogeneous spaces. An important feature of our cocycles is that they take integer values (as opposed to real or rational values). We find in particular a formula for the instanton number of a connection over a closed four-manifold with arbitrary structure group. For flat connections, our formulae recover and generalize those of Cheeger and Simons. The methods of this paper apply also to the purely geometric construction of the Quillen line bundle with its metric.

MSC:

57R20 Characteristic classes and numbers in differential topology
55N05 Čech types
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beilinson, A.: Higher regulators and values of L-functions. J. Sov. Math.30, 2036–2070 (1985) · Zbl 0588.14013
[2] Beresin, F.A., Retakh, V.S.: A method of computing characteristic classes of vector bundles. Rep. Math. Phys.18, 363–378 (1980) · Zbl 0548.55015
[3] Borel, A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. Math. (2)57, 115–207 (1953) · Zbl 0052.40001
[4] Borel, A., Hirzebruch, F.: Characteristic classes and homogeneous spaces 2. Am. J. Math.81, 315–382 (1959)
[5] Bott, R., Tu, L.: ”Differential forms in algebraic topology”. Berlin, Heidelberg, New York: Springer, 1982 · Zbl 0496.55001
[6] Brylinski, J.-L., McLaughlin, D.A.: A geometric construction of the first Pontryagin class. In: Quantum Topology, Series on Knots and Everything. L. Kauffman, R. Baadhio, (eds.) Singapore: World Scientific, 1993, pp. 209–220 · Zbl 0837.57022
[7] Brylinski, J.-L., McLaughlin, D.A.: Holomorphic quantization and unitary representations of the Teichmüller group. In: Lie Theory and Geometry: In honor of Bertram Kostant, Progress in Math., Birkhaüser, vol.123, 1994, pp. 21–64 · Zbl 0846.58030
[8] Brylinski, J.-L., McLaughlin, D.A.: The geometry of degree 4 characteristic classes and of line bundles on loop spaces I. Duke Math. J.75, 603–638 (1994) · Zbl 0844.57025
[9] Brylinski, J.-L., McLaughlin, D.A.: The geometry of degree 4 characteristic classes and of line bundles on loop spaces II. Preprint (1995). To appear in Duke Math. J. · Zbl 0864.57026
[10] Cheeger, J.: Spectral geometry of singular riemannian spaces. J. Diff. Geom.18, 575–657 (1983) · Zbl 0529.58034
[11] Cheeger, J., Simons, J.: Differential characters and geometric invariants. Lecture Notes in Math. vol.1167, Berlin, Heidelberg, New York: Springer, 1985, pp. 50–80 · Zbl 0621.57010
[12] Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math.99, 48–69 (1974) · Zbl 0283.53036
[13] Dupont, J.: The dilogarithm as a characteristic class for flat bundles. J. Pure Appl. Alg.44, 137–164 (1987) · Zbl 0624.57024
[14] Dupont, J.: Characteristic classes for flat bundles and their formulas. Topology33, 575–590 (1994) · Zbl 0860.57020
[15] Esnault, H.: Characteristic classes of flat bundles. Topology27, 323–352 (1987) · Zbl 0699.32016
[16] Gabrielov, A., Gel’fand, I.M., Losik, M.V.: Combinatorial calculation of characteristic classes. Funct. Anal. Appl.9, 48–50, 103–115, 186–202 (1975) · Zbl 0312.57015
[17] Gel’fand, I.M., MacPherson, R.: A combinatorial formula for the Pontryagin classes. Bull. A. M. S.26, no. 2, 304–309 (1992) · Zbl 0756.57015
[18] Goncharov, A.B.: Explicit construction of characteristic classes. Adv. Soviet Math.16, Part I 169–210 (1993) · Zbl 0809.57016
[19] Laursen, M.L., Schierholz, G., Wiese, U-J.: 2 and 3-cochains in 4-dimensionalSU(2)-gauge theory. Commun. Math. Phys.103, 693–699 (1986) · Zbl 0597.58051
[20] MacPherson, R.: The combinatorial formula of Gabrielov, Gel’fand and Losik for the first Pontryagin class. Séminaire Bourbaki, Exposés 498–506, Lecture Notes in Math. vol.677, Berlin, Heidelberg, New York, 1977, pp. 105–124
[21] Narasimhan, M.S., Ramanan, S.: Existence of universal connections. Am. J. Math.83, 563–572 (1961)85, 223–231 (1963) · Zbl 0114.38203
[22] Weil, A.: Sur les théorèmes de de Rham. Commun. Math. Helv.26, 119–145 (1952) · Zbl 0047.16702
[23] Zucker, S.: The Cheeger-Simons invariant as a Chern class. In: ”Algebraic analysis, Geometry and Number Theory, Proc. JAMI Inaugural Conference”, JHU Press, 1989, pp. 397–417 · Zbl 0790.14013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.