×

zbMATH — the first resource for mathematics

On certain algebraic curves related to polynomial maps. (English) Zbl 0860.11065
This is an interesting and well-written paper, exploring the interface between meromorphic dynamics and Galois theory. The author introduces algebraic methods to deal with questions of irreducibility of certain polynomials, which had been previously approached only using dynamics. The main result is that there is only a finite number of cyclic extensions of a field, whose Galois group is generated by a given polynomial dynamical system.

MSC:
11R09 Polynomials (irreducibility, etc.)
37P05 Arithmetic and non-Archimedean dynamical systems involving polynomial and rational maps
12F12 Inverse Galois theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Armstrong, M.A. : Groups and Symmetry , Springer Verlag, New York, 1988. · Zbl 0663.20001
[2] Batra, A. and Morton, P. : Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, I, Rocky Mountain J. of Math. 24 (1994), 453-481. · Zbl 0810.11071
[3] Bousch, T. : Sur Quelques Problèmes de Dynamique Holomorphe , These, Universite de Paris-Sud, Centre d’ Orsay, 1992.
[4] Branner, B. : The Mandelbrot set , in Chaos and Fractals , R. L. Devaney and L. Keen, eds., AMS Publications, Providence, R.I., 1989, pp. 75-105.
[5] Douady, A. and Hubbard, J.H. : Etude Dynamique des Polynomes Complex, I, II , Publications Mathematiques d’Orsay, Universite de Paris-Sud, 1984. · Zbl 0552.30018
[6] Eichler, M. : Einführung in die Theorie der algebraischen Zahlen und Funktionen , Birkhäuser Verlag, Basel, 1963. · Zbl 0152.19501
[7] Faltings, G. : Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , Invent. Math. 73 (1983), 349-366. · Zbl 0588.14026
[8] Flynn, V. , Poonen, B. and Schaefer, E. : Cycles of quadratic polynomials and rational points on a genus 2 curve , submitted. · Zbl 0958.11024
[9] Hasse, H. : Zahlentheorie , Akademie Verlag, Berlin, 1969. · Zbl 1038.11501
[10] Lau, E. and Schleicher, D. : Internal addreses in the Mandelbrot set and irreducibility of polynomials , SUNY Stony Brook, Institute for Mathematical Sciences, Preprint #1994/19.
[11] Morton, P. : Characterizing cyclic cubic extensions by automorphism polynomials , J. Number Theory 49 (1994), 183-208. · Zbl 0810.12003
[12] Morton, P. : Arithmetic properties of periodic points of quadratic maps, II , preprint, Wellesley College, 1994.
[13] Morton, P. and Patel, P. : The Galois theory of periodic points of polynomial maps , Proc. London Math. Soc. (3) 68 (1994), 225-263. · Zbl 0792.11043
[14] Morton, P. and Silverman, J. : Periodic points, multiplicities and dynamical units , J. reine angew. Math. 461 (1995), 81-122. · Zbl 0813.11059
[15] Morton, P. and Vivaldi, F. : Bifurcations and discriminants for polynomial maps , Nonlinearity 8 (1995), 571-584. · Zbl 0827.12001
[16] Schleicher, D. : Internal addresses in the Mandelbrot set and irreducibility of polynomials , Ph.D. Dissertion, Cornell University, 1994.
[17] Silverman, J.H. : The Arithmetic of Elliptic Curves , Springer-Verlag, New York, 1986. · Zbl 0585.14026
[18] Stichtenoth, H. : Algebraic Function Fields and Codes, Universitext Series , Springer-Verlag, Berlin, 1993. · Zbl 0816.14011
[19] Vivaldi, F. and Hatjispyros, S. : Galois theory of periodic orbits of polynomial maps , Nonlinearity 5 (1992), 961-978. · Zbl 0767.11049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.