×

zbMATH — the first resource for mathematics

On the finiteness of Bass numbers of local cohomology modules. (English) Zbl 0860.13011
Summary: We show that, if \(I\) is an ideal of dimension 1 of an analytically irreducible local ring, then the Bass numbers of local cohomology modules with support in \(V(I)\) are finite.

MSC:
13D45 Local cohomology and commutative rings
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
14B15 Local cohomology and algebraic geometry
18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8 – 28. · Zbl 0112.26604
[2] N. Bourbaki, Éléments de mathématique. Fascicule XXVII. Algèbre commutative. Chapitre 1: Modules plats. Chapitre 2: Localisation, Actualités Scientifiques et Industrielles, No. 1290, Herman, Paris, 1961 (French). · Zbl 0108.04002
[3] Donatella Delfino, On the cofiniteness of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 79 – 84. · Zbl 0806.13005
[4] Robin Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin-New York, 1967. · Zbl 0237.14008
[5] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (\?\?\? 2), North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics, Vol. 2. · Zbl 0159.50402
[6] Robin Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/1970), 145 – 164. · Zbl 0196.24301
[7] Robin Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403 – 450. · Zbl 0169.23302
[8] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[9] Craig Huneke and Jee Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 3, 421 – 429. · Zbl 0749.13007
[10] Craig L. Huneke and Rodney Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), no. 2, 765 – 779. · Zbl 0785.13005
[11] Craig Huneke, Problems on local cohomology, Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990) Res. Notes Math., vol. 2, Jones and Bartlett, Boston, MA, 1992, pp. 93 – 108. · Zbl 0782.13015
[12] Gennady Lyubeznik, Finiteness properties of local cohomology modules (an application of \?-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41 – 55. · Zbl 0795.13004
[13] I. G. MacDonald and Rodney Y. Sharp, An elementary proof of the non-vanishing of certain local cohomology modules, Quart. J. Math. Oxford Ser. (2) 23 (1972), 197 – 204. · Zbl 0235.14004
[14] Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511 – 528. · Zbl 0084.26601
[15] Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. · Zbl 0441.13001
[16] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. · Zbl 0603.13001
[17] Robert Speiser, Cohomological dimension and Abelian varieties, Amer. J. Math. 95 (1973), 1 – 34. · Zbl 0271.14009
[18] Jan R. Strooker, Homological questions in local algebra, London Mathematical Society Lecture Note Series, vol. 145, Cambridge University Press, Cambridge, 1990. · Zbl 0786.13008
[19] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, Springer-Verlag, New York-Heidelberg, 1975. Reprint of the 1960 edition; Graduate Texts in Mathematics, Vol. 29. · Zbl 0322.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.