×

Nonlinear simulation of electromagnetic fields with domain decomposition methods on MIMD parallel computers. (English) Zbl 0861.65108

The paper deals with numerical solutions of nonlinear electromagnetic field problems. The domain decomposition method is used with multiple instruction multiple data parallel computers. Finite element and boundary element methods are combined in a unified variational problem. The particular problem of magnetic field computations for electric machines is solved, with the boundary element method for the infinite exterior subdomain being more effective than the finite element method, which is preferred for the interior subdomain due to the complicated field structure occurring there.

MSC:

65Z05 Applications to the sciences
35Q60 PDEs in connection with optics and electromagnetic theory
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
65N38 Boundary element methods for boundary value problems involving PDEs
65Y05 Parallel numerical computation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bramble, J. H.; Pasciak, J. E., A preconditioning technique for indefinite systems resulting from mixed approximation of elliptic problems, Math. Comput., 50, 1-17 (1988) · Zbl 0643.65017
[2] Bramble, J. H.; Pasciak, J. E.; Schatz, A. H., The construction of preconditioners for elliptic problems by substructuring I-IV, Math. Comput., 53, 1-24 (1989) · Zbl 0623.65118
[3] Bramble, J. H.; Pasciak, J. E.; Xu, J., Parallel multilevel preconditioners, Math. Comput., 55, 1-22 (1990) · Zbl 0725.65095
[4] Costabel, M., Symmetric methods for the coupling of finite elements and boundary elements, (Brebbia, C. A.; Wendland, W. L.; Kuhn, G., Boundary Elements IX (1987), Springer: Springer Berlin), 411-420
[5] Dembo, R. S.; Eisenstat, S. C.; Steihaug, T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 400-408 (1982) · Zbl 0478.65030
[6] Deuflhard, P., Global inexact Newton methods for very large scale nonlinear problems, IMPACT Comput. Sci. Eng., 3, 366-393 (1991) · Zbl 0745.65032
[7] Dryja, M., A capacitance matrix method for Dirichlet problems on polygonal regions, Numer. Math., 39, 51-64 (1982) · Zbl 0478.65062
[8] Haase, G.; Heise, B.; Jung, M.; Kuhn, M., FEMBEM — a parallel solver for linear and nonlinear coupled FE/BE-equations, DFG priority research program “Boundary Element Methods”, (Report 94-16 (1994), University Stuttgart: University Stuttgart Stuttgart)
[9] Haase, G.; Langer, U.; Meyer, A., The approximate dirichlet domain decomposition method. Part I: an algebraic approach. Part II: applications to 2nd-order elliptic boundary value problems, Computing, 47, 153-167 (1991), (Part II) · Zbl 0741.65092
[10] Haase, G.; Langer, U.; Meyer, A.; Nepomnyaschikh, S. V., Hierarchical extension operators and local multigrid methods in domain decomposition preconditioners, East-W est J. Numer. Math., 2, 173-193 (1994) · Zbl 0849.65089
[11] hackbusch, W., Multi-grid methods and applications, (Springer Series in Computational Mathematics, Vol. 4 (1985), Springer: Springer Berlin) · Zbl 0585.65030
[12] Heise, B., Multigrid-Newton methods for the calculation or electromagnetic fields, (Telschow, G., Third Multigrid Seminar. Third Multigrid Seminar, Biesenthal 1988. Third Multigrid Seminar. Third Multigrid Seminar, Biesenthal 1988, Report R-MATH-03/89 (1989), Karl-Weierstrass-Institut: Karl-Weierstrass-Institut Berlin), 53-73
[13] Heise, B., Mehrgitter-Newton-V erfahren zur Berechnung nichtlinearer magnetischer Felder, (Wissenschaftliche Schriftenreihe 4/1991 (1991), Technische Universität Chemnitz)
[14] Heise, B., Nonlinear field calculations with multigrid-newton methods, IMPACT Comput. Sci. Eng., 5, 75-110 (1993) · Zbl 0779.65079
[15] Heise, B., Analysis of a fully discrete finite element method for nonlinear magnetic field problem, SIAM J. Numer. Anal., 31, 745-759 (1994) · Zbl 0804.65123
[16] Heise, B., Nonlinear magnetic field simulation with FE/BE domain decomposition methods on MIMD parallel computers, DFG priority research program “Boundary Element Methods”, (Report 94-19 (1994), University Stuttgart: University Stuttgart Stuttgart)
[17] Heise, B., Nonlinear field simulation with FE domain decomposition methods on massively parallel computers (1995), Submitted
[18] B. Heise and M. Kuhn, Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled FE/BE formulations, Computing; B. Heise and M. Kuhn, Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled FE/BE formulations, Computing · Zbl 0849.65093
[19] Hsiao, G. C.; Wendland, W., Domain decomposition in boundary element methods, (Glowinski, R.; Kuznetsov, Y. A.; Meurant, G.; Pérraux, J.; Widlund, O. B., Proc. IV Internat. Symp. on Domain Decomposition Methods. Proc. IV Internat. Symp. on Domain Decomposition Methods, Moscow, May 1990 (1991), SIAM: SIAM Philadelphia), 41-49 · Zbl 0766.65094
[20] Kuhn, M., A parallel solver for exterior problems based on a coupled FE/BE-model, DFG priority research program “Boundary Element Methods”, (Report 94-15 (1994), University Stuttgart: University Stuttgart Stuttgart)
[21] Langer, U., Parallel iterative solution of symmetric coupled fe/be- equations via domain decomposition, Contemp. Math., 157, 335-344 (1994) · Zbl 0798.65110
[22] Steinbach, O., Preconditioned iterative solvers for boundary element and domain decomposition methods, (Talk given at Oberwolfach Conference (2-8 October 1994)) · Zbl 0874.65090
[23] Tong, C. H.; Chan, T. F.; Kuo, C. C.J., A domain decomposition preconditioner based on a change to a multilevel nodal basis, SIAM J. Sci. Statist. Comput., 12, 1486-1495 (1991) · Zbl 0744.65084
[24] Wendland, W., On the coupling of finite elements and boundary elements, (Kuhn, G.; Mang, H., Discretization Methods in Structural Mechanics (1990), Springer: Springer Berlin), 405-414, Proc. IUTUM/IACM Symp., Vienna, 1989
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.