×

zbMATH — the first resource for mathematics

A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. (English) Zbl 0861.73068
A finite shell element for large deformations is presented based on extensible director kinematics. The essential feature is an interface to arbitrary three-dimensional material laws. The nonlinear Lagrangian formulation is based on the three-field variational principle, parametrized with the displacement vector, enhanced Green-Lagrangian strain tensor and second Piola Kirchhoff stress tensor. A number of example problems describing large deformation as well as finite strain applications are presented. Compressible and incompressible hyperelastic materials of the St. Venant-Kirchhoff, neo-Hookean and Mooney-Rivlin type are particularly used.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74B20 Nonlinear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ramm, E., Geometrisch nichtlineare elastostatik und finite elemente, ()
[2] Argyris, J.H.; Dunne, P.C.; Malejannakis, G.A.; Schelkle, E., A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems, Comput. methods appl. mech. engrg., 10, 371-403, (1977) · Zbl 0367.73073
[3] Gruttmann, F.; Stein, E.; Wriggers, P., Theory and numerics of thin elastic shells with finite rotations, Ingenieur-archiv, 59, 54-67, (1989)
[4] Simo, J.C.; F́ox, D.D.; Rifai, M.S., On a stress resultant geometrically exact shell model. part III: computational aspects of the non-linear theory, Comput. methods appl. mech. engrg., 79, 21-70, (1990) · Zbl 0746.73015
[5] Basar, Y.; Ding, Y.; Krätzig, W.B., Finite-rotation shell elements via mixed formulation, Comput. mech., 10, 289-306, (1992) · Zbl 0779.73055
[6] Sansour, C.; Bufler, H., An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation, Int. J. numer. methods engrg., 31, 73-115, (1992) · Zbl 0760.73043
[7] Wriggers, P.; Gruttmann, F., Thin shells with finite rotations formulated in Biot-stresses: theory and finite element formulation, Int. J. numer. methods engrg., 36, 2049-2071, (1993) · Zbl 0779.73074
[8] Stein, E.; Seifert, B.; Ohnimus, S.; Carstensen, C., Adaptive finite element analysis of geometrically non-linear plates and shells, especially buckling, Int. J. numer. methods engrg., 37, 2631-2655, (1994) · Zbl 0809.73072
[9] Hughes, T.J.R.; Carnoy, E., Non-linear finite element shell formulation accounting for large membrane strains, Comput. methods appl. mech. engrg, 39, 69-82, (1983) · Zbl 0509.73083
[10] Parisch, H., Efficient non-linear finite element shell formulation involving large strains, Engrg. comput., 3, 121-128, (1986)
[11] Schieck, B.; Pietraszkiewicz, W.; Stumpf, H., Theory and numerical analysis of shells undergoing large elastic strains, Int. J. solids struct., 29, 6, 689-709, (1992) · Zbl 0760.73044
[12] Schoop, H., Oberflächenorientierte schalentheorien endlicher verschiebungen, Ingenieur-archiv, 56, 427-437, (1986) · Zbl 0595.73061
[13] Szabó, B.A.; Sahrmann, G.J., Hierarchic plate and shell models based on p-extension, Int. J. numer. methods engrg., 26, 1855-1881, (1988) · Zbl 0661.73048
[14] Büchter, N.; Ramm, E.; Roehl, D., Three-dimensional extension of non-linear shell formulations based on the enhanced assumed strain concept, Int. J. numer. methods. engrg., 37, 2551-2568, (1994) · Zbl 0808.73046
[15] Simo, J.C.; Rifai, M.S.; Fox, D.D., On a stress resultant geometrically exact shell model. part IV: variable thickness shells with through-the-thickness stretching, Comput. methods appl. mech. engrg., 81, 91-126, (1990) · Zbl 0746.73016
[16] Simmonds, J.G., The strain energy density of rubber-like shells, Int. J. solids struct., 21, 1, 67-77, (1985) · Zbl 0554.73066
[17] Stumpf, H.; Makowski, J., On large strain deformations of shells, Acta mechanica, 65, 153-168, (1986) · Zbl 0602.73035
[18] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible models, Int. J. numer. methods engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[19] Simo, J.C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Int. J. numer. methods engrg., 33, 1413-1449, (1992) · Zbl 0768.73082
[20] Reddy, B.D.; Simo, J.C., Stability and convergence of a class of enhanced strain methods, (1994), Preprint · Zbl 0855.73073
[21] Hughes, T.J.R.; Liu, W.K., Non-linear finite element analysis of shells: part I. three-dimensional shells, Comput. methods appl. mech. engrg., 26, 331-362, (1981) · Zbl 0461.73061
[22] Simo, J.C., On a stress resultant geometrically exact shell model. part VII: shell intersections with 5/6-DOF finite element formulations, Comput. methods appl. mech. engrg., 108, 319-339, (1993) · Zbl 0855.73074
[23] Parisch, H., An investigation of a finite rotation four node assumed strain shell element, Int. J. numer. methods engrg., 31, 127-150, (1991) · Zbl 0825.73783
[24] Argyris, J., An excursion into large rotations, Comput. methods appl. mech. engrg., 32, 85-155, (1982) · Zbl 0505.73064
[25] Büchter, N.; Ramm, E., Shell theory versus degeneration—A comparison in large rotation finite element analysis, Int. J. numer. methods engrg., 34, 39-59, (1992) · Zbl 0760.73041
[26] Szabó, B.; Babus̀ka, I., Finite element analysis, (1991), John Wiley & Sons New York
[27] Andelfinger, U.; Ramm, E., EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements, Int. J. numer. methods engrg., 36, 1311-1337, (1993) · Zbl 0772.73071
[28] Dvorkin, E.N.; Bathe, K.-J., A continuum mechanics based four-node shell element for general non-linear analysis, Engrg. comput., 1, 77-88, (1984)
[29] Zienkiewicz, O.C.; Taylor, R.L., ()
[30] Wagner, W.; Gruttmann, F., A simple finite rotation formulation for composite shell elements, Engrg. comput., 11, 145-176, (1994)
[31] MacNeal, R.H.; Harder, R.L., A proposed standard set of problems to test finite element accuracy, Finite elements anal. res., 1, 3-20, (1985)
[32] Chroscielewski, J.; Makowski, J.; Stumpf, H., Genuinely resultant shell finite elements accounting for geometric and material non-linearity, Int. J. numer. methods engrg., 35, 63-94, (1992) · Zbl 0780.73075
[33] Gruttmann, F.; Taylor, R.L., Theory and finite element formulation of rubberlike membrane shells using principal stretches, Int. J. numer. methods engrg., 35, 1111-1126, (1992) · Zbl 0768.73074
[34] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. numer. methods engrg., 37, 1981-2004, (1994) · Zbl 0804.73067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.