×

zbMATH — the first resource for mathematics

The existence of approximate solutions for two-dimensional potential flow problems. (English) Zbl 0862.76044
Summary: A proof is given of the existence of an approximate complex variable boundary element method solution for a Dirichlet problem. This constructive proof can be used as a basis for numerical calculations.
Reviewer: Reviewer (Berlin)

MSC:
76M15 Boundary element methods applied to problems in fluid mechanics
76B99 Incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] and , The Complex Boundary Element in Engineering Analysis, Springer Verlag, New York, 1987. · doi:10.1007/978-1-4612-4660-2
[2] Hromadka, ASCE J. Irrigat. Drainage Div. 107 pp 187– (1981)
[3] Hromdka, Cold Regions Sci. Technol. 6 pp 115– (1982) · doi:10.1016/0165-232X(82)90004-0
[4] Hromadka, Eng. Anal. 3 pp 9– (1986) · doi:10.1016/0264-682X(86)90186-3
[5] Hromadka, Adv. in Eng. Software 16 pp 47– (1993) · doi:10.1016/0965-9978(93)90028-R
[6] and , Application of the CVBEM to nonuniform St. Venant torsion, in Computer Methods in Applied Mathematics and Engineering, Elsevier, New York, 1985. · Zbl 0556.73085
[7] Whitley, Num. Methods for Part. Diff. Eq. 10 pp 369– (1994) · Zbl 0842.65072 · doi:10.1002/num.1690100308
[8] Boundary Value Problems, Dover, New York, 1990.
[9] Whitley, Appl. Math. Mod. 18 pp 423– (1994) · Zbl 0811.65102 · doi:10.1016/0307-904X(94)90303-4
[10] Boundary Behavior of Conformal Maps, Springer Verlag, New York, 1992. · doi:10.1007/978-3-662-02770-7
[11] Conformal Mappings and Boundary Value Problems, Amer. Math. Soc., Providence, Rhode Island, 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.