×

zbMATH — the first resource for mathematics

Complementarity and variational problems. State of the art. Proceedings of the international conference, Baltimore, MD, USA, November 1–4, 1995. (English) Zbl 0863.00054
Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics. xii, 473 p. (1997).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Andersen, Erling D.; Ye, Yinyu, On a homogeneous algorithm for a monotone complementarity problem with nonlinear equality constraints, 1-11 [Zbl 0886.90148]
Anitescu, Mihai; Cremer, James F.; Potra, Florian A., On the existence of solutions to complementarity formulations of contact problems with friction, 12-21 [Zbl 0887.70009]
De Schutter, Bart; De Moor, Bart, The extended linear complementarity problem and its applications in the max-plus algebra, 22-39 [Zbl 0886.90149]
Dirkse, Steven P.; Ferris, Michael C., Crash techniques for large-scale complementarity problems, 40-61 [Zbl 0886.90150]
Evstigneev, Igor V.; Flåm, Sjur Didrik, Noncooperative games in networks; stability and sensitivity of equilibria, 62-75 [Zbl 0886.90194]
Facchinei, Francisco; Fischer, Andreas; Kanzow, Christian, A semismooth Newton method for variational inequalities: The case of box constraints, 76-90 [Zbl 0886.90152]
Fukushima, Masao; Pang, Jong-Shi, Minimizing and stationary sequences of merit functions for complementarity problems and variational inequalities, 91-104 [Zbl 0886.90153]
Gabriel, Steven A.; Moré, Jorge J., Smoothing of mixed complementarity problems, 105-116 [Zbl 0886.90154]
Gowda, M. Seetharama; Sznajder, Roman, On the pseudo-Lipschitzian behavior of the inverse of a piecewise affine function, 117-131 [Zbl 0886.90155]
Klarbring, Anders, Steady sliding and linear complementarity, 132-147 [Zbl 0947.74042]
Kočvara, Michal; Outrata, Jiří V., A nonsmooth approach to optimization problems with equilibrium constraints, 148-164 [Zbl 0887.90168]
Kuznetsov, Yu. A.; Neittaanmäki, P.; Tarvainen, P., Overlapping block methods for obstacle problems with convection-diffusion operators, 165-180 [Zbl 0889.49020]
Li, Wu, A merit function and a Newton-type method for symmetric linear complementarity problems, 181-203 [Zbl 0886.90156]
Luo, Zhi-Quan; Tseng, Paul, A new class of merit functions for the nonlinear complementarity problem, 204-225 [Zbl 0886.90158]
Mangasarian, O. L., The ill-posed linear complementarity problem, 226-233 [Zbl 0886.90159]
Marcotte, P.; Zhu, D. L., Equilibria with infinitely many differentiated classes of customers, 234-258 [Zbl 0896.47040]
Mesbahi, Mehran; Papavassilopoulos, George P., Least elements and the minimal rank matrices, 259-266 [Zbl 0878.15012]
Mistakidis, E. S.; Panagiotopoulos, P. D., Numerical methods based on the L.C.P. for the treatment of nonconvex inequality problems in mechanics, 267-283 [Zbl 0886.90160]
Mohan, S. R.; Neogy, S. K.; Parthasarathy, T., Linear complementarity and discounted polystochastic game when one player controls transitions, 284-294 [Zbl 0886.90190]
Patriksson, Michael; Petersson, Joakim, A subgradient method for contact structural optimization, 295-314 [Zbl 0886.90182]
Portugal, Luís; Fernandes, Luís; Júdice, Joaquim, A truncated Newton interior-point algorithm for the solution of a multicommodity spatial equilibrium model, 315-344 [Zbl 0886.90161]
Ralph, Daniel; Wright, Stephen J., Superlinear convergence of an interior-point method for monotone variational inequalities, 345-385 [Zbl 0886.90162]
Simantiraki, Evangelia M.; Shanno, David F., An infeasible-interior-point algorithm for solving mixed complementarity problems, 386-404 [Zbl 0886.90163]
Smith, Tony E.; Friesz, Terry L.; Bernstein, David H.; Suo, Zhong-Gui, A comparative analysis of two minimum-norm projective dynamics and their relationship to variational inequalities, 405-424 [Zbl 0879.65042]
Stewart, D. E.; Trinkle, J. C., Dynamics, friction, and complementarity problems, 425-439 [Zbl 0907.70007]
Stone, Richard E., Lipschitzian matrices are nondegenerate INS-matrices, 440-451 [Zbl 0886.90164]
Sun, Defeng; Fukushima, Masao; Qi, Liqun, A computable generalized Hessian of the \(D\)-gap function and Newton-type methods for variational inequality problems, 452-473 [Zbl 0886.90165]

MSC:
00B25 Proceedings of conferences of miscellaneous specific interest
90-06 Proceedings, conferences, collections, etc. pertaining to operations research and mathematical programming
PDF BibTeX Cite