×

zbMATH — the first resource for mathematics

\(q\)-deformation of the Lorentz group. (English) Zbl 0863.17010
The author studies the \(q\)-deformation of the Lorentz group by \(q\)-deforming its two-dimensional representation. His approach is via the spinor algebra of van der Waerden for the Lorentz group. Further he proposes a \(q\)-analogue of Penrose’s decomposition of a reducible representation of the Lorentz group into irreducibles.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Marcus, J. Math. Phys. 36 pp 2652– (1995)
[2] Finkelstein, Lett. Math. Phys. 34 pp 169– (1995)
[3] Ogievetsky, Lett. Math. Phys. 23 pp 233– (1991)
[4] Truini, Lett. Math. Phys. 21 pp 287– (1991)
[5] Varadarajan 26 pp 53– (1992)
[6] Podles, Commun. Math. Phys. 130 pp 381– (1990)
[7] Carow-Watamura, Z. Phys. C 48 pp 159– (1990)
[8] Schlicker, Z. Phys. C 47 pp 625– (1990)
[9] Nomura, J. Phys. Soc. Jpn. 51 pp 4260– (1990)
[10] Dobrev, J. Phys. A Math. Gen. 26 pp 1317– (1993)
[11] Lustig, Adv. Math. 20 pp 237– (1988)
[12] Rosso, Comm. Math. Phys. 117 pp 581– (1988)
[13] Koornwinder, NATO ASI Ser C 294 pp 257– (1994)
[14] Finkelstein, Lett. Math. Phys. 24 pp 75– (1993)
[15] Penrose, Ann. Phys. 10 pp 171– (1960)
[16] Finkelstein, J. Math. Phys. 35 pp 6123– (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.